Space Hubble Telescope News

Hubble Captures the Beating Heart of the Crab Nebula

print.jpg


low_keystone.png


At the center of the Crab Nebula, located in the constellation Taurus, lies a celestial "beating heart" that is an example of extreme physics in space. The tiny object blasts out blistering pulses of radiation 30 times a second with unbelievable clock-like precision. Astronomers soon figured out that it was the crushed core of an exploded star, called a neutron star, which wildly spins like a blender on puree. The burned-out stellar core can do this without flying apart because it is 10 billion times stronger than steel. This incredible density means that the mass of 1.4 suns has been crushed into a solid ball of neutrons no bigger than the width of a large city. This Hubble image captures the region around the neutron star. It is unleashing copious amounts of energy that are pushing on the expanding cloud of debris from the supernova explosion — like an animal rattling its cage. This includes wave-like tsunamis of charged particles embedded in deadly magnetic fields.

On July 4, 1054, Chinese astronomers recorded the supernova that formed the Crab Nebula. The ultimate celestial firework, this "guest star" was visible during the daytime for 23 days, shining six times brighter than the planet Venus. The supernova was also recorded by Japanese, Arabic, and Native American stargazers. While searching for a comet that was predicted to return in 1758, French astronomer Charles Messier discovered a hazy nebula in the direction of the long-vanished supernova. He would later add it to his celestial catalog as "Messier 1." Because M1 didn't move across the sky like a comet, Messier simply ignored it other than just marking it as a "fake comet." Nearly a century later the British astronomer William Parsons sketched the nebula. Its resemblance to a crustacean led to M1's other name, the Crab Nebula. In 1928 Edwin Hubble first proposed associating the Crab Nebula to the Chinese "guest star" of 1054. (More at Hubble Site)
 
A Surprising Planet with Three Suns

full_jpg.jpg


low_keystone.png


A team of astronomers led by the University of Arizona has directly imaged with the SPHERE instrument on ESO's Very Large Telescope the first planet ever found in a wide orbit inside a triple-star system. The orbit of such a planet had been expected to be unstable, probably resulting in the planet being quickly ejected from the system. But somehow this one survives. This observation of the HD 131399 system suggests that such systems may actually be more common than previously thought. The results will be published online in the journal Science on July 7, 2016. The artist's impression shows a view of the triple-star system HD 131399 from the giant planet orbiting the system. The planet is HD 131399Ab and appears at the lower left of the picture.

For images and more information about HD 131399 and SPHERE, visit A Surprising Planet with Three Suns. (More at Hubble Site)
 
NASA's Hubble Telescope Makes First Atmospheric Study of Earth-Sized Exoplanets

full_jpg.jpg


low_keystone.jpg


The possibility of life on other worlds has fueled humankind's imagination for centuries. Over the past 20 years, the explosion of discoveries of planets orbiting other stars has sparked the search for worlds like Earth that could sustain life. Most of those candidates were found with other telescopes, including NASA's Kepler space observatory. NASA's Hubble Space Telescope has also made some unique contributions to the planet hunt. Astronomers used Hubble, for example, to make the first measurements of the atmospheric composition of extrasolar planets.

Now, astronomers have used Hubble to conduct the first search for atmospheres around temperate, Earth-sized planets beyond our solar system, uncovering clues that increase the chances of habitability on two exoplanets. They discovered that the exoplanets TRAPPIST-1b and TRAPPIST-1c, approximately 40 light-years away, are unlikely to have puffy, hydrogen-dominated atmospheres usually found on gaseous worlds. Those dense atmospheres act like a greenhouse, smothering any potential life. Observations from NASA's upcoming James Webb Space Telescope will help determine the full composition of these atmospheres and hunt for potential biosignatures, such as carbon dioxide and ozone, and methane. (More at Hubble Site)
 
NASA's Hubble Looks to the Final Frontier

full_jpg.jpg


low_keystone.png


Celebrating its 50th anniversary this year, the TV series "Star Trek" has captured the public's imagination with the signature phrase, "To boldly go where no one has gone before." The Hubble Space Telescope simply orbits Earth and doesn't "boldly go" deep into space. But it looks deeper into the universe than ever before possible to explore the fabric of time and space and find the farthest objects ever seen. This is epitomized in this Hubble image that is part of its Frontier Fields program to probe the far universe. This view of a massive cluster of galaxies unveils a very cluttered-looking universe filled with galaxies near and far. Some are distorted like a funhouse mirror through a warping-of-space phenomenon first predicted by Einstein a century ago. (More at Hubble Site)
 
Hubble Uncovers a Galaxy Pair Coming in from the Wilderness

print.jpg


low_keystone.png


The galaxies in the early universe were much smaller than our Milky Way and churned out stars at a rapid pace. They grew larger through mergers with other dwarf galaxies to eventually build the magnificent spiral and elliptical galaxies we see around us today. But astronomers using the Hubble Space Telescope have looked at two small galaxies that were left off the star party list. For many billions of years Pisces A and Pisces B lived in a vast intergalactic wilderness that was devoid of gas, which fuels star formation. They got left out in the cold.

Better late than never. Like Rip van Winkle awakening from a long slumber, the dwarf galaxies have now ended their star-making drought and have joined the party. Astronomers estimate that less than 100 million years ago the galaxies doubled their star-formation rate. For most of the universe's history these puny galaxies dwelled in the Local Void, a region of the universe sparsely populated with galaxies. Now the galaxies have moved into a region crowded with galaxies and full of intergalactic gas. This dense environment is triggering star birth. (More at Hubble Site)
 
Dr. Nancy A. Levenson Appointed Deputy Director of the Space Telescope Science Institute

large_web.jpg


low_display-2016-36-a_2x.jpg


Dr. Nancy A. Levenson has been appointed Deputy Director of the Space Telescope Science Institute (STScI) in Baltimore, Maryland. The Institute is the science operations center for the Hubble Space Telescope and the James Webb Telescope (JWST) that is scheduled to launch in 2018.

Since 2009, Levenson served as Deputy Director and Head of Science at the Gemini Observatory in La Serena, Chile. She also led the Gemini Observatory as Acting Director for several months in 2012. (More at Hubble Site)
 
Hubble Takes Close-up Look at Disintegrating Comet

print.jpg


low_keystone-1635a.jpg


Comet 332P/Ikeya-Murakami survived for 4.5 billion years in the frigid Kuiper Belt, a vast reservoir of icy bodies on the outskirts of our solar system. The objects are the leftovers from our solar system's construction. But within the last few million years, the unlucky comet was gravitationally kicked to the inner solar system by the outer planets. The comet, dubbed 332P, found a new home, settling into an orbit just beyond Mars. But the new home, closer to the sun, has doomed the comet. Sunlight is heating up Comet 332P's surface, causing jets of gas and dust to erupt. The jets act like rocket engines, spinning up the comet's rotation. The faster spin rate loosened chunks of material, which are drifting off the surface and into space.

The Hubble Space Telescope caught the latest cloud of debris ejected by Comet 332P. The images, taken over three days in January 2016, represent one of the sharpest, most detailed observations of a comet breaking apart. Hubble reveals about 25 building-size chunks from the comet floating through space at roughly the walking speed of an adult. Material will continue to break away from Comet 332P. Astronomers estimate that the comet, which has survived for 4.5 billion years, will be gone in another 150 years. (More at Hubble Site)
 
Barry M. Lasker Data Science Fellowship

full_jpg.jpg


low_p1638-keystone.png


The Space Telescope Science Institute (STScI) in Baltimore, Maryland, announces the initiation of the Barry M. Lasker Data Science Postdoctoral Fellowship. The Lasker Fellowship is a STScI-funded program designed to provide up to three years of support for outstanding postdoctoral researchers conducting innovative astronomical studies that involve the use or creation of one or more of the following: large astronomical databases, massive data processing, data visualization and discovery tools, or machine-learning algorithms. The first recipient of the fellowship is Dr. Gail Zasowski of the Johns Hopkins University (JHU) in Baltimore, Maryland. The fellowship is named in honor of STScI astronomer Barry M. Lasker (1939-1999). (More at Hubble Site)
 
Hubble Finds Planet Orbiting Pair of Stars

full_jpg.jpg


low_display-2016-32a.png


Two is company, but three might not always be a crowd, at least in space. When astronomers found an extrasolar planet orbiting a neighboring star, a detailed analysis of the data uncovered a third body. But astronomers couldn't definitively identify whether the object was another planet or another star in the system.

Now, nine years later, astronomers have used ultra-sharp images from the Hubble Space Telescope to determine that the system consists of a Saturn-mass planet circling two diminutive, faint stars in a tight orbit around each other. The system, called OGLE-2007-BLG-349, resides 8,000 light-years away. Astronomers teased the signature of the three objects using an observational technique called gravitational microlensing. This occurs when the gravity of a foreground star bends and amplifies the light of a background star that momentarily aligns with it. The particular character of the light magnification can reveal clues to the nature of the foreground star and any associated planets. (More at Hubble Site)
 
Hubble Spots Possible Water Plumes Erupting on Jupiter's Moon Europa

STScI-H-2016-33-a-print.jpg


low_hs-2016-33-a-keystone.png


New findings from NASA's Hubble Space Telescope show suspected water plumes erupting from Jupiter's icy moon Europa. These observations bolster earlier Hubble work suggesting that Europa is venting water vapor. A team of astronomers, led by William Sparks of the Space Telescope Science Institute in Baltimore, Maryland, observed these finger-like projections while viewing Europa's limb as the moon passed in front of Jupiter. The team was inspired to use this observing method by studies of atmospheres of planets orbiting other stars.

The plumes are estimated to rise about 125 miles before, presumably, raining material back down onto Europa's surface. This is exciting because Europa is a plausible place for life to have developed beyond the Earth. If the venting plumes originate in a subsurface ocean, they could act as an elevator to bring deep-sea life above Europa's surface, where it could be sampled by visiting spacecraft. This offers a convenient way to access the chemistry of that ocean without drilling through miles of ice. To view NASA's Europa plumes summary video, visit the YouTube link at
. (More at Hubble Site)
 
Hubble Detects Giant 'Cannonballs' Shooting from Star

STScI-H-2016-34-a-print.jpg


low_keystone-2016-34-a.jpg


Great balls of fire! The Hubble Space Telescope has detected superhot blobs of gas, each twice as massive as the planet Mars, being ejected near a dying star. The plasma balls are zooming so fast through space that they would travel from Earth to the moon in 30 minutes. This stellar "cannon fire" has continued once every 8.5 years for at least the past 400 years, astronomers estimate. The fireballs present a puzzle to astronomers because the ejected material could not have been shot out by the host star, called V Hydrae. The star is a bloated red giant, residing 1,200 light-years away, which has probably shed at least half of its mass into space during its death throes.

The current best explanation is that the plasma balls were launched by an unseen companion star in an elliptical orbit around the red giant. The elongated orbit carries the companion every 8.5 years to within the puffed-up atmosphere of V Hydrae, where it gobbles up material from the bloated star. This material then settles into a disk around the companion, and serves as the launching pad for blobs of plasma, which travel at roughly a half-million miles per hour. This star system could explain a dazzling variety of glowing shapes uncovered by Hubble that are seen around dying stars, called planetary nebulae, researchers say. (More at Hubble Site)
 
Hubble Reveals Observable Universe Contains 10 Times More Galaxies Than Previously Thought

STScI-H-2016-39-a-full.jpg


low_p1639-keystone.png


In Arthur C. Clarke's novel "2001: A Space Odyssey," astronaut David Bowman exclaims, "My God, it's full of stars!" before he gets pulled into an alien-built wormhole in space. When the Hubble Space Telescope made its deepest views of the universe, astronomers might have well exclaimed: "My God, it's full of galaxies!" The Hubble Ultra Deep Field, for example, revealed 10,000 galaxies of various shapes, sizes, colors, and ages, all within an area roughly one-tenth the diameter of the full moon. What's mind-blowing is that these myriad galaxies, though plentiful, may represent merely 10 percent of the universe's total galaxy population. That's according to estimates from a new study of Hubble's deep-field surveys. The study's authors came to the staggering conclusion that at least 10 times more galaxies exist in the observable universe than astronomers thought.

According to the authors, the missing 90 percent of the universe's galaxies are too faint and too far away to be detected by the current crop of telescopes, including Hubble. To uncover them, astronomers will have to wait for much larger and more powerful future telescopes. The researchers arrived at their result by painstakingly converting Hubble deep-field images into 3-D pictures so they could make accurate measurements of the number of galaxies at different epochs in the universe's history. (More at Hubble Site)
 
STScI Appoints Head of Newly Created Data Science Mission Office

STScI-H-2016-44-a-full.jpg


low_keystone-display-1644-a.png


Dr. Arfon Smith has been selected to lead the newly created Data Science Mission Office at the Space Telescope Science Institute (STScI) in Baltimore, Maryland. The Data Science Mission Head is responsible for maximizing the scientific returns from a huge archive containing astronomical observations from 17 space astronomy missions and ground-based observatories.

Since 2013, Smith has been a project scientist and program manager at GitHub, Inc., the world's largest platform for open source software. His duties included working to develop innovative strategies for sharing data and software in academia. Smith also helped to define GitHub's business strategy for public data products, and he played a key role in establishing the company's first data science and data engineering teams. (More at Hubble Site)
 
A Death Star's Ghostly Glow

STScI-H-2016-37-a-full.tif


low_keystone-display-2016-37a.png


In writer Edgar Allan Poe's short story "The Tell-Tale Heart," a killer confesses his crime after he thinks he hears the beating of his victim's heart. The heartbeat turns out to be an illusion. Astronomers, however, discovered a real "tell-tale heart" in space, 6,500 light-years from Earth. The "heart" is the crushed core of a long-dead star, called a neutron star, which exploded as a supernova and is now still beating with rhythmic precision. Evidence of its heartbeat are rapid-fire, lighthouse-like pulses of energy from the fast-spinning neutron star. The stellar relic is embedded in the center of the Crab Nebula, the expanding, tattered remains of the doomed star.

The nebula was first identified in 1731 and named in 1844. In 1928, Edwin Hubble linked the nebula to a supernova first witnessed in the spring of 1054 A.D. Now, the eerie glow of the burned-out star reveals itself in this new Hubble Space Telescope snapshot of the heart of the Crab Nebula. The green hue, representative of the broad color range of the camera filter used, gives the nebula a Halloween theme. (More at Hubble Site)
 
Dr. Laurent Pueyo Receives 2016 Outstanding Young Scientist Award

STScI-H-2016-40-a-full.jpg


low_image-keystone-1640a.png


The Maryland Academy of Sciences has selected Dr. Laurent Pueyo of the Space Telescope Science Institute (STScI) in Baltimore, Maryland, as the recipient of the 2016 Outstanding Young Scientist award. He will receive the award in a ceremony on Nov. 16 at the Maryland Science Center, located in Baltimore's Inner Harbor.

Pueyo joined STScI in 2013 as an associate astronomer after spending three years as a Sagan Fellow at Johns Hopkins University in Baltimore. His duties at STScI include working on improving the extrasolar-planet imaging capabilities of NASA's James Webb Space Telescope, scheduled to launch in late 2018. The STScI astronomer was a member of the team, led by STScI's Remi Soummer, that discovered that three planets around the nearby star HR 8799 had been hiding in plain sight since 1998 in archival images taken by Hubble's Near Infrared Camera and Multi-Object Spectrometer. (More at Hubble Site)
 
STScI Astronomers Nancy Levenson and David Soderblom Elected AAAS Fellows

STScI-H-2016-46-a-print.jpg


low_image-keystone-1646.png


Nancy A. Levenson and David R. Soderblom of the Space Telescope Science Institute (STScI) in Baltimore, Maryland, have been named Fellows of the American Association for the Advancement of Science (AAAS). Election as an AAAS Fellow is an honor bestowed upon AAAS members by their peers.

The AAAS cited Dr. Levenson for her exemplary service and distinguished contributions to the field of astrophysics as Deputy Director of the international Gemini Observatory in La Serena, Chile. She is currently STScI's Deputy Director. Soderblom is cited by the AAAS for his distinguished work in the field of astrophysics, with contributions to understanding low-mass stars and exoplanet searches. An Astronomer at STScI since 1984, Soderblom is also a Principal Research Scientist at Johns Hopkins University in Baltimore. In honor of their efforts, Levenson, Soderblom, and the 389 other newly elected Fellows will receive an official certificate and a gold and blue (representing science and engineering, respectively) rosette pin on February 18, 2017, at the AAAS Fellows Forum during the 2017 AAAS annual meeting in Boston, Massachusetts. For more information about this announcement, visit News. (More at Hubble Site)
 
Space Telescope Science Institute to Host Data from World's Largest Digital Sky Survey

STScI-H-2016-41-a-full.jpg


low_keystone-1641-a.png


Data from the world's largest digital sky survey is being publicly released today by the Space Telescope Science Institute (STScI) in Baltimore, Maryland, in conjunction with the University of Hawaii Institute for Astronomy in Honolulu, Hawaii. Data from the Pan-STARRS1 Surveys will allow anyone to access millions of images and use the database and catalogs containing precision measurements of billions of stars and galaxies. The four years of data comprise 3 billion separate sources, including stars, galaxies, and various other objects. The immense collection contains 2 petabytes of data, which is equivalent to one billion selfies, or one hundred times the total content of Wikipedia. (More at Hubble Site)
 
Festive Nebulas Light Up Milky Way Galaxy Satellite

p1642a1-ngc248-2667x2667.tif


low_STScI-H-p1642a-k1340x520.png


Two glowing nebulas in the Small Magellanic Cloud, a dwarf galaxy that is a satellite of our Milky Way galaxy, have been observed by NASA's Hubble Space Telescope. Young, brilliant stars at the center of each nebula are heating hydrogen, causing these clouds of gas and dust to glow red. The image is part of a study called Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE). Astronomers are using Hubble to probe the Milky Way satellite to understand how dust is different in galaxies that have a far lower supply of heavy elements needed to create dust. (More at Hubble Site)
 
Hubble Provides Interstellar Road Map for Voyagers' Galactic Trek

STScI-H-p1701a-f2700x1935.tif


low_STScI-H-p1701a-K1340X520.png


In 1977, NASA's Voyager 1 and 2 spacecraft began their pioneering journey across the solar system to visit the giant outer planets. Now, the Voyagers are hurtling through unexplored territory on their road trip beyond our solar system. Along the way, they are measuring the interstellar medium, the mysterious environment between stars that is filled with the debris from long-dead stars. NASA's Hubble Space Telescope is providing the road map, by measuring the material along the probes' trajectories as they move through space. Hubble finds a rich, complex interstellar ecology, containing multiple clouds of hydrogen, laced with other elements. Hubble data, combined with the Voyagers, have also provided new insights into how our sun travels through interstellar space. (More at Hubble Site)
 
Hubble Detects 'Exocomets' Taking the Plunge into a Young Star

STSCI-H-p1702a-f3300x2400.png


low_STSCI-H-p1702a-k1340x520.png


Interstellar forecast for a nearby star: Raining comets! The comets are plunging into the star HD 172555, which resides 95 light-years from Earth. The comets were not seen directly around the star. Astronomers inferred their presence when they used NASA's Hubble Space Telescope to detect gas that is likely the vaporized remnants of their icy nuclei.

The presence of these doomed comets provides circumstantial evidence for "gravitational stirring" by an unseen Jupiter-size planet, where comets deflected by the massive object's gravity are catapulted into the star. These events also provide new insights into the past and present activity of comets in our solar system. It's a mechanism where infalling comets could have transported water to Earth and the other inner planets of our solar system. HD 172555 represents the third extrasolar system where astronomers have detected doomed, wayward comets. All of these systems are young, under 40 million years old. (More at Hubble Site)
 
Back
Top