Space Hubble Telescope News

Hubble Provides Interstellar Road Map for Voyagers' Galactic Trek

STScI-H-p1701a-f2700x1935.tif


low_STScI-H-p1701a-K1340X520.png


In 1977, NASA's Voyager 1 and 2 spacecraft began their pioneering journey across the solar system to visit the giant outer planets. Now, the Voyagers are hurtling through unexplored territory on their road trip beyond our solar system. Along the way, they are measuring the interstellar medium, the mysterious environment between stars that is filled with the debris from long-dead stars. NASA's Hubble Space Telescope is providing the road map, by measuring the material along the probes' trajectories as they move through space. Hubble finds a rich, complex interstellar ecology, containing multiple clouds of hydrogen, laced with other elements. Hubble data, combined with the Voyagers, have also provided new insights into how our sun travels through interstellar space. (More at Hubble Site)
 
Hubble Detects 'Exocomets' Taking the Plunge into a Young Star

STSCI-H-p1702a-f3300x2400.png


low_STSCI-H-p1702a-k1340x520.png


Interstellar forecast for a nearby star: Raining comets! The comets are plunging into the star HD 172555, which resides 95 light-years from Earth. The comets were not seen directly around the star. Astronomers inferred their presence when they used NASA's Hubble Space Telescope to detect gas that is likely the vaporized remnants of their icy nuclei.

The presence of these doomed comets provides circumstantial evidence for "gravitational stirring" by an unseen Jupiter-size planet, where comets deflected by the massive object's gravity are catapulted into the star. These events also provide new insights into the past and present activity of comets in our solar system. It's a mechanism where infalling comets could have transported water to Earth and the other inner planets of our solar system. HD 172555 represents the third extrasolar system where astronomers have detected doomed, wayward comets. All of these systems are young, under 40 million years old. (More at Hubble Site)
 
Hubble Captures 'Shadow Play' Caused by Possible Planet

STScI-H-p1703a-f2400x2400.tif


low_STScI-H-p1703a-k1340x520.png


Eerie mysteries in the universe can be betrayed by simple shadows. The wonder of a solar eclipse is produced by the moon's shadow, and over 1,000 planets around other stars have been cataloged by the shadow they cast when passing in front of their parent star. Astronomers were surprised to see a huge shadow sweeping across a disk of dust and gas encircling a nearby, young star. They have a bird's-eye view of the disk, because it is tilted face-on to Earth, and the shadow sweeps around the disk like the hands moving around a clock. But, unlike the hands of a clock, the shadow takes 16 years to make one rotation.

Hubble has 18 years' worth of observations of the star, called TW Hydrae. Therefore, astronomers could assemble a time-lapse movie of the shadow's rotation. Explaining it is another story. Astronomers think that an unseen planet in the disk is doing some heavy lifting by gravitationally pulling on material near the star and warping the inner part of the disk. The twisted, misaligned inner disk is casting its shadow across the surface of the outer disk. TW Hydrae resides 192 light-years away and is roughly 8 million years old. (More at Hubble Site)
 
'Our Place In Space:' Astronomy and Art Combine in Brand New Hubble-Inspired Exhibition

STScI-H-p1704a-f2464x1009.tiff


low_STScI-H-p1704a-k1340x520.png


Since the dawn of civilization, we have gazed into the night sky and attempted to make sense of what we saw there, asking questions such as: Where do we come from? What is our place in the universe? And are we alone? As we ask those questions today and new technology expands our horizons further into space, our yearning for their answers only grows. Since its launch in 1990, NASA's Hubble Space Telescope has continued this quest for answers while orbiting Earth every 90 minutes. Hubble has not only made countless new astronomical discoveries, but also brought astronomy to the public eye, satisfying our curiosity, sparking our imaginations, and greatly impacting culture, society, and art.

A new traveling exhibition, "Our Place in Space" features iconic Hubble images. It presents not only a breathtaking pictorial journey through our solar system and to the edges of the known universe, but also Hubble-inspired works by selected Italian artists. By seamlessly integrating perspectives from both artists and astronomers, the exhibition will inspire visitors to think deeply about how humanity fits into the grand scheme of the universe. Before moving to other venues, the exhibition will be on display from February 1 to April 17, 2017, in the Istituto Veneto di Science, Lettere ed Arti, Palazzo Cavalli Franchetti, on the banks of the Grand Canal in Venice, Italy. For more information about the traveling exhibition and Hubble, visit: Our Place in Space to launch in Venice - Astronomy and art combine in a brand new Hubble-inspired exhibition. (More at Hubble Site)
 
Dr. Margaret Meixner and Dr. Marc Postman Promoted to STScI Distinguished Astronomers

STSCI-H-p1705a-m2000x1125.png


low_STSCI-H-p1705a-k1340x520.png


The Space Telescope Science Institute (STScI) in Baltimore, Maryland, has appointed Dr. Margaret Meixner and Dr. Marc Postman to the position of STScI Distinguished Astronomer. Distinguished Astronomer is the highest level of appointment on the tenure track at STScI and represents a rank commensurate with the highest level of professorial appointments at major universities.

Meixner's promotion recognizes her long-term contributions to research and service at STScI. She has led international teams to study the life cycle of dust in the Magellanic Clouds using the Hubble, Spitzer and Herschel space telescopes. Postman is being recognized for his long-term contributions to the study of the formation and evolution of galaxies and clusters of galaxies. He has led important research to determine how the environments of galaxies determine their shapes and how the most massive galaxies evolve. (More at Hubble Site)
 
Hubble Witnesses Massive Comet-Like Object Pollute Atmosphere of a White Dwarf

STSCI-H-p1709a-f5100x3825.png


low_STSCI-H-p1709a-k1340x520.png


Astronomers have found the best evidence yet of the remains of a comet-like object scattered around a burned-out star. They used NASA's Hubble Space Telescope to detect the debris, which has polluted the atmosphere of a compact star known as a white dwarf. The icy object, which has been ripped apart, is similar to Halley's Comet in chemical composition, but it is 100,000 times more massive and has a much higher amount of water. It is also rich in the elements essential for life, including nitrogen, carbon, oxygen, and sulfur. These findings are evidence for a belt of comet-like bodies similar to our solar system's Kuiper Belt orbiting the white dwarf. This is the first evidence of comet-like material polluting a white dwarf's atmosphere. The results also suggest the presence of unseen, surviving planets around the burned-out star. (More at Hubble Site)
 
NASA Telescope Reveals Largest Batch of Earth-Size, Habitable-Zone Planets Around Single Star

STSCI-H-p1707a-f-5295x2978.tif


low_STSCI-H-p1707a-k1340x520.png


NASA's Spitzer Space Telescope has revealed the first known system of seven Earth-size planets around a single star. Three of these planets are located in an area called the habitable zone, where liquid water is most likely to thrive on a rocky planet. The system sets a new record for the greatest number of habitable zone planets found outside our solar system. Any of these seven planets could have liquid water, the key to life as we know it. The exoplanet system is called TRAPPIST-1 and is only 40 light-years away. Following up on the Spitzer discovery, NASA's Hubble Space Telescope has initiated the screening of four of the planets, including the three inside the habitable zone. These observations aim at assessing the presence of puffy, hydrogen-dominated atmospheres, typical for gaseous worlds like Neptune, around these planets. In May 2016, the Hubble team observed the two innermost planets and found no evidence for such puffy atmospheres. This finding strengthened the case that the planets closest to the star are terrestrial in nature. Astronomers plan follow-up studies using NASA's upcoming James Webb Space Telescope, scheduled to launch in 2018. With much greater sensitivity, Webb will be able to detect the chemical fingerprints of water, methane, oxygen, ozone, and other components of a planet's atmosphere. Webb also will analyze planets' temperatures and surface pressures — key factors in assessing their habitability.

For illustrations and more information about the TRAPPIST-1 system, visit: Exoplanet Exploration: Planets Beyond our Solar System (More at Hubble Site)
 
The Dawn of a New Era for Supernova 1987A

STSCI-H-p1708a-f-3667x4024.tiff


low_STSCI-H-p1708a-k-1340x520.png


In February 1987, on a mountaintop in Chile, telescope operator Oscar Duhalde stood outside the observatory at Las Campanas and looked up at the clear night sky. There, in a hazy-looking patch of brightness in the sky — the Large Magellanic Cloud (LMC), a neighboring galaxy - was a bright star he hadn't noticed before.

That same night, Canadian astronomer Ian Shelton was at Las Campanas observing stars in the Large Magellanic Cloud. As Shelton was studying a photographic plate of the LMC later that night, he noticed a bright object that he initially thought was a defect in the plate. When he showed the plate to other astronomers at the observatory, he realized the object was the light from a supernova. Duhalde announced that he saw the object too in the night sky. The object turned out to be Supernova 1987A, the closest exploding star observed in 400 years. Shelton had to notify the astronomical community of his discovery. There was no Internet in 1987, so the astronomer scrambled down the mountain to the nearest town and sent a message to the International Astronomical Union's Bureau for Astronomical Telegrams, a clearing house for announcing astronomical discoveries.

Since that finding, an armada of telescopes, including the Hubble Space Telescope, has studied the supernova. Hubble wasn't even in space when SN 1987A was found. The supernova, however, was one of the first objects Hubble observed after its launch in 1990. Hubble has continued to monitor the exploded star for nearly 30 years, yielding insight into the messy aftermath of a star's violent self-destruction. Hubble has given astronomers a ring-side seat to watch the brightening of a ring around the dead star as the supernova blast wave slammed into it. (More at Hubble Site)
 
The 20th Anniversary of the Hubble Space Telescope's STIS Instrument

STSCI-H-p1706a-m2000x2000.png


low_STSCI-H-p1706a-k1340x520.png


The Versatile Space Telescope Imaging Spectrograph (STIS) Opens New Vistas in Astronomy
Twenty years ago, astronauts on the second servicing mission to the Hubble Space Telescope installed the Space Telescope Imaging Spectrograph (STIS) aboard Hubble. This pioneering instrument combines a camera with a spectrograph, which provides a "fingerprint" of a celestial object's temperature, chemical composition, density, and motion. STIS also reveals changes in the evolving universe and leads the way in the field of high-contrast imaging. The versatile instrument is sensitive to a wide range of wavelengths of light, from ultraviolet through the optical and into the near-infrared. From studying black holes, monster stars, and the intergalactic medium, to analyzing the atmospheres of worlds around other stars, STIS continues its epic mission to explore the universe. (More at Hubble Site)
 
Hubble Dates Black Hole’s Last Big Meal

STSCI-H-G1710a-f3000x2145.tiff


low_STSCI-H-G1710a-k1340x520.png


Energetic Event 'Burped' Billowing Plasma Bubbles 6 Million Years Ago
About 6 million years ago, when our very remote ancestors began to evolve away from chimpanzees, our Milky Way galaxy's hefty black hole was enjoying a sumptuous feast. It gulped down a huge clump of interstellar hydrogen.

Now, eons later, we see the result of the black hole feast. The black hole "burped" hot plasma that is now towering far above and below the plane of our galaxy. These invisible bubbles, weighing the equivalent of millions of suns, are called the Fermi Bubbles. Their energetic gamma-ray glow was first discovered in 2010 by NASA's Fermi Gamma-ray Space Telescope. (Enrico Fermi was an Italian physicist who created the world's first nuclear reactor.)

Astronomers have wondered how long ago the gaseous lobes were created, and if the process was slow or rapid. Hubble observations of the northern bubble have solved the question by determining a more precise age for the bubbles. Hubble was used to measure the speed of the gasses in the billowing bubbles, and astronomers could then calculate back to the time when they were born in a fast, energetic event. (More at Hubble Site)
 
Hubble Discovery of Runaway Star Yields Clues to Breakup of Multiple-Star System

STSCI-H-p1711a-f-3000x2000.png


low_STSCI-H-p1711a-k-1340x520.png


Star Is Missing Link to a System that Flew Apart Over 500 Years Ago
In the 1400s, two power struggles were taking place quadrillions of miles apart. In England, two rival branches of the royal House of Plantagenet were battling each other for control of the country's throne. And, in a nebula far, far away, a cluster of stars was waging a real-life star wars, with the stellar members battling each other for supremacy in the Orion Nebula. The gravitational tussle ended with the system breaking apart and at least three stars being ejected in different directions.

Astronomers spotted two of the speedy, wayward stars over the past few decades. They traced both stars back 540 years to the same location and suggested they were part of a now-defunct multiple-star system. But the duo's combined energy, which is propelling them outward, didn't add up. The researchers reasoned there must be at least one other culprit that robbed energy from the stellar toss-up. Now NASA's Hubble Space Telescope has helped astronomers find the final piece of the puzzle by nabbing a third runaway star, which was a member of the same system as the two previously known stars. The stars reside in a small region of young stars called the Kleinmann-Low Nebula, near the center of the vast Orion Nebula complex, located 1,300 light-years from Earth. (More at Hubble Site)
 
Gravitational Wave Kicks Monster Black Hole Out Of Galactic Core

STScI-H-p1712a-m-2000x1500.png


low_STScI-H-p1712a-k-1340x520.png


Runaway black hole is the most massive ever detected far from its central home
Normally, hefty black holes anchor the centers of galaxies. So researchers were surprised to discover a supermassive black hole speeding through the galactic suburbs. Black holes cannot be observed directly, but they are the energy source at the heart of quasars — intense, compact gushers of radiation that can outshine an entire galaxy. NASA's Hubble Space Telescope made the discovery by finding a bright quasar located far from the center of the host galaxy.

Researchers estimate that it took the equivalent energy of 100 million supernovas exploding simultaneously to jettison the black hole. What could pry this giant monster from its central home? The most plausible explanation for this propulsive energy is that the monster object was given a kick by gravitational waves unleashed by the merger of two black holes as a result of a collision between two galaxies. First predicted by Albert Einstein, gravitational waves are ripples in the fabric of space that are created when two massive objects collide. (More at Hubble Site)
 
NASA Announces Astronomy and Astrophysics Fellows for 2017

STSCI-H-g-1713a-f2000x800.png


low_STSCI-H-g-1713a-k1340x520.png


Some of the world's most exciting, young scientists to help NASA explore mysteries of the cosmos
NASA has selected 28 Fellows for its prestigious Einstein, Hubble, and Sagan fellowships. Each post-doctoral fellowship provides three years of support to awardees to pursue independent research in astronomy and astrophysics. The new Fellows will begin their programs in the fall of 2017 at a host university or research center of their choosing in the United States. (More at Hubble Site)
 
Hubble Takes Close-up Portrait of Jupiter

STSCI-H-p1715a-m-2000x2000.png


low_STSCI-H-p1715a-k-1340x520.png


Majestic Giant Planet is a Swirl of Colorful Clouds
Named after the Roman king of the gods, the immense planet Jupiter is undoubtedly king of the solar system. Containing more mass than all the other planets combined, Jupiter's immense gravitational field deflects wayward comets that otherwise might slam into Earth, wreaking havoc.

This dazzling Hubble Space Telescope photo of Jupiter was taken when it was comparatively close to Earth, at a distance of 415 million miles. Hubble reveals the intricate, detailed beauty of Jupiter's clouds as arranged into bands of different latitudes, known as tropical regions. These bands are produced by air flowing in different directions at various latitudes. Lighter colored areas, called zones, are high-pressure where the atmosphere rises. Darker low-pressure regions where air falls are called belts. The planet's trademark, the Great Red Spot, is a long-lived storm roughly the diameter of Earth. Much smaller storms appear as white or brown-colored ovals. Such storms can last as little as a few hours or stretch on for centuries. (More at Hubble Site)
 
Comet or Asteroid? Hubble Discovers that a Unique Object is a Binary

STSCI-H-p1732a-f-1200x2250.tif


low_STSCI-H-p1732a-k-1340x520.png


An Asteroid That Split in Two 5,000 Years Ago Is Spouting a Comet Tail

Astronomers categorize the minor bodies in the solar system according to their location and physical composition. Comets are a loose collection of ice and dust that fall in toward the Sun from beyond the orbits of the major planets, and grow long tails of dust and gas along the way. Asteroids are rocky or metallic and are relegated to a zone between Mars and Jupiter. But nature isn't that tidy. The Hubble Space Telescope photographed a pair of asteroids orbiting each other that have a tail of dust, which is definitely a comet-like feature. The odd object, called 2006 VW139/288P, is the first known binary asteroid that is also classified as a main-belt comet. Roughly 5,000 years ago, 2006 VW139/288P probably broke into two pieces due to a fast rotation. (More at Hubble Site)
 
Astronomers Unveil Colorful Hubble Photo Gallery

web.jpg


A vibrant celestial photo album of some of NASA Hubble Space Telescope's most stunning views of the universe is being unveiled today on the Internet. Called the Hubble Heritage Program, this technicolor gallery is being assembled by a team of astronomers at Hubble's science operations center, the Space Telescope Science Institute in Baltimore, Md. The four images released today are (top row, left to right) spiral galaxy NGC 7742, Saturn, and (bottom row, left to right) the Sagittarius Star Cloud and the Bubble Nebula. (More at Hubble Site)
 
NASA's Hubble Observes the Farthest Active Inbound Comet Yet Seen

STSCI-H-p1740a-f-1000x1000.png


low_STSCI-H-p1740a-k-1340x520.png


The Comet that Came in from the Cold

A solitary frozen traveler has been journeying for millions of years toward the heart of our planetary system. The wayward vagabond, a city-sized snowball of ice and dust called a comet, was gravitationally kicked out of the Oort Cloud, its frigid home at the outskirts of the solar system. This region is a vast comet storehouse, composed of icy leftover building blocks from the construction of the planets 4.6 billion years ago.

The comet is so small, faint, and far away that it eluded detection. Finally, in May 2017, astronomers using the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) in Hawaii spotted the solitary intruder at a whopping 1.5 billion miles away - between the orbits of Saturn and Uranus. The Hubble Space Telescope was enlisted to take close-up views of the comet, called C/2017 K2 PANSTARRS (K2).

The comet is record-breaking because it is already becoming active under the feeble glow of the distant Sun. Astronomers have never seen an active inbound comet this far out, where sunlight is merely 1/225th its brightness as seen from Earth. Temperatures, correspondingly, are at a minus 440 degrees Fahrenheit. Even at such bone-chilling temperatures, a mix of ancient ices on the surface - oxygen, nitrogen, carbon dioxide, and carbon monoxide - is beginning to sublimate and shed as dust. This material balloons into a vast 80,000-mile-wide halo of dust, called a coma, enveloping the solid nucleus.

Astronomers will continue to study K2 as it travels into the inner solar system, making its closest approach to the Sun in 2022. (More at Hubble Site)
 
Space Telescope Science Institute to Host Data from World's Largest Digital Sky Survey

STScI-H-2016-41-a-full.jpg


low_keystone-1641-a.png


Data from the world's largest digital sky survey is being publicly released today by the Space Telescope Science Institute (STScI) in Baltimore, Maryland, in conjunction with the University of Hawaii Institute for Astronomy in Honolulu, Hawaii. Data from the Pan-STARRS1 Surveys will allow anyone to access millions of images and use the database and catalogs containing precision measurements of billions of stars and galaxies. The four years of data comprise 3 billion separate sources, including stars, galaxies, and various other objects. The immense collection contains 2 petabytes of data, which is equivalent to one billion selfies, or one hundred times the total content of Wikipedia. (More at Hubble Site)
 
NASA Telescope Reveals Largest Batch of Earth-Size, Habitable-Zone Planets Around Single Star

STSCI-H-p1707a-f-5295x2978.tif


low_STSCI-H-p1707a-k1340x520.png


NASA's Spitzer Space Telescope has revealed the first known system of seven Earth-size planets around a single star. Three of these planets are located in an area called the habitable zone, where liquid water is most likely to thrive on a rocky planet. The system sets a new record for the greatest number of habitable zone planets found outside our solar system. Any of these seven planets could have liquid water, the key to life as we know it. The exoplanet system is called TRAPPIST-1 and is only 40 light-years away. Following up on the Spitzer discovery, NASA's Hubble Space Telescope has initiated the screening of four of the planets, including the three inside the habitable zone. These observations aim at assessing the presence of puffy, hydrogen-dominated atmospheres, typical for gaseous worlds like Neptune, around these planets. In May 2016, the Hubble team observed the two innermost planets and found no evidence for such puffy atmospheres. This finding strengthened the case that the planets closest to the star are terrestrial in nature. Astronomers plan follow-up studies using NASA's upcoming James Webb Space Telescope, scheduled to launch in 2018. With much greater sensitivity, Webb will be able to detect the chemical fingerprints of water, methane, oxygen, ozone, and other components of a planet's atmosphere. Webb also will analyze planets' temperatures and surface pressures — key factors in assessing their habitability.

For illustrations and more information about the TRAPPIST-1 system, visit: Exoplanet Exploration: Planets Beyond our Solar System (More at Hubble Site)
 
Hubble Spots Possible Venting Activity on Europa

STSCI-H-p1717a-m-2000x1001.png


low_STSCI-H-p1717a-k-1340x520.png


Best Evidence Yet for Reoccurring Water Vapor Plumes Erupting from Jupiter’s Moon
When Galileo discovered Jupiter's moon Europa in 1610, along with three other satellites whirling around the giant planet, he could have barely imagined it was such a world of wonder.

This revelation didn't happen until 1979, when NASA's Voyager 1 and 2 flew by Jupiter and found evidence that Europa's interior, encapsulated under a crust of ice, has been kept warm over billions of years. The warmer temperature is due to gravitational tidal forces that flex the moon's interior — like squeezing a rubber ball — keeping it warm. At the time, one mission scientist even speculated that the Voyagers might catch a snapshot of geysers on Europa.

Such activity turned out to be so elusive that astronomers had to wait over three decades for the peering eye of Hubble to monitor the moon for signs of venting activity. A newly discovered plume seen towering 62 miles above the surface in 2016 is at precisely the same location as a similar plume seen on the moon two years earlier by Hubble. These observations bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite.

The location of the plumes corresponds to the position of an unusually warm spot on the moon's icy crust, as measured in the late 1990s by NASA's Galileo spacecraft. Researchers speculate that this might be circumstantial evidence for material venting from the moon's subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. The plumes offer an opportunity to sample what might be in the ocean, in the search for life on that distant moon. (More at Hubble Site)
 
Back
Top