Space Hubble Telescope News

NASA Finds a Large Amount of Water in an Exoplanet's Atmosphere

low_STScI-H-p1809a-k-1340x520.png


Using Hubble and Spitzer space telescopes, scientists studied the “hot Saturn” called WASP-39b — a hot, bloated, Saturn-mass exoplanet located about 700 light-years from Earth. By dissecting starlight filtering through the planet’s atmosphere into its component colors, the team found clear evidence for a large amount of water vapor. In fact, WASP-39b has three times as much water as Saturn does. Although the researchers predicted they’d see water, they were surprised by how much they found. This suggests that the planet formed farther out from the star, where it was bombarded by a lot of icy material. Because WASP-39b has so much more water than Saturn, it must have formed differently from our famously ringed neighbor.

(More at HubbleSite.com)
 
Hubble Finds Huge System of Dusty Material Enveloping the Young Star HR 4796A

low_STSCI-H-p1811a-k-1340x520.png


Finding lots of dust around stars may not sound like anything astronomers would get excited about. The universe is a dusty place. But dust around a young star can be evidence that planet formation is taking place. This isn’t a new idea. In 1755, German Philosopher Immanuel Kant first proposed that planets formed around our Sun in a debris disk of gas and dust. Astronomers imagined that this process might take place around other stars.

They had to wait until the early 1980s for the first observational evidence for a debris disk around any star to be uncovered. An edge-on debris disk was photographed around the southern star Beta Pictoris. Beta Pictoris remained the poster child for such debris systems until the late 1990s when the Hubble Space Telescope’s second-generation instruments, which had the capability of blocking out the glare of a central star, allowed many more disks to be photographed. Now, they are thought to be common around stars. About 40 such systems have been imaged to date, largely by Hubble.

In this recent image, Hubble uncovers a vast, complex dust structure, about 150 billion miles across, enveloping the young star HR 4796A. A bright, narrow inner ring of dust is already known to encircle the star, based on much earlier Hubble photographs. It may have been corralled by the gravitational pull of an unseen giant planet. This newly discovered huge dust structure around the system may have implications for what this yet-unseen planetary system looks like around the 8-million-year-old star, which is in its formative years of planet construction.

(More at HubbleSite.com)
 
Arrested Development: Hubble Finds Relic Galaxy Close to Home

low_STSCI-H-p1817a-k-1340x520.png


The adventuring cinema archeologist Indiana Jones would be delighted to find a long-sought relic in his own backyard. Astronomers have gotten lucky enough to achieve such a quest. They identified a very rare and odd assemblage of stars that has remained essentially unchanged for the past 10 billion years. The diffuse stellar island provides valuable new insights into the origin and evolution of galaxies billions of years ago.

As far as galaxy evolution goes, this object is clearly a case of “arrested development.” The galaxy, NGC 1277, started its life with a bang long ago, ferociously churning out stars 1,000 times faster than seen in our own Milky Way today. But it abruptly went quiescent as the baby boomer stars aged and grew ever redder. Though Hubble has seen such “red and dead” galaxies in the early universe, one has never been conclusively found nearby. Where the early galaxies are so distant, they are just red dots in Hubble deep-sky images. NGC 1277 offers a unique opportunity to see one up close and personal.

The telltale sign of the galaxy’s state lies in the ancient globular clusters that swarm around it. Massive galaxies tend to have both metal-poor (appearing blue) and metal-rich (appearing red) globular clusters. The red clusters are believed to form as the galaxy forms, while the blue clusters are later brought in as smaller satellites are swallowed by the central galaxy. However, NGC 1277 is almost entirely lacking in blue globular clusters. The red clusters are the strongest evidence that the galaxy went out of the star-making business long ago. However, the lack of blue clusters suggests that NGC 1277 never grew further by gobbling up surrounding galaxies.

(More at HubbleSite.com)
 
Hubble Solves Cosmic 'Whodunit' with Interstellar Forensics

low_STSCI-H-p1815a-k-1340x520.png


In a cosmic tug-of-war between two dwarf galaxies orbiting the Milky Way, only NASA’s Hubble Space Telescope can see who’s winning. The players are the Large and Small Magellanic Clouds, and as they gravitationally tug at each other, one of them has pulled out a huge amount of gas from its companion. This shredded and fragmented gas, called the Leading Arm, is being devoured by the Milky Way and feeding new star birth in our galaxy. But which dwarf galaxy is doing the pulling, and whose gas is now being feasted upon? Scientists used Hubble’s ultraviolet vision to chemically analyze the gas in the Leading Arm and determine its origin. After years of debate, we now have the answer to this “whodunit” mystery.

(More at HubbleSite.com)
 
Kepler Solves Mystery of Fast and Furious Explosions

low_STSCI-H-p1818a-k-1340x520.png


The universe is so huge that it's estimated that a star explodes as a supernova once every second. Astronomers capture a small fraction of these detonations because they are comparatively short-lived, like fireflies flickering on a summer evening. After skyrocketing to a sudden peak in brightness, a supernova can take weeks to slowly fade away.

For the past decade astronomers have been befuddled by a more curious "flash-in-the-pan" that pops up and then disappears in just a few days, not weeks. It's called a Fast-Evolving Luminous Transient (FELT). Only a few FELTs have been seen in telescopic sky surveys because they are so brief.

Then along came NASA's Kepler Space Telescope that caught a FELT in the act. Kepler's outstanding ability to precisely record changes in the brightness of celestial objects was designed to look for planets across our galaxy. But a great spinoff from the observatory is to go supernova hunting too.

Kelper's unique capabilities captured the properties of the blast. This allowed astronomers to exclude a range of theories about how FELTs happen, and converge on a plausible model. They conclude that the brief flash is from a vast shell of material around a supernova that abruptly lights up when the supernova blast wave crashes into it.

(More at HubbleSite.com)
 
Dark Matter Goes Missing in Oddball Galaxy

low_STSCI-H-p1816a-k-1340x520.png


Grand, majestic spiral galaxies like our Milky Way are hard to miss. Astronomers can spot these vast complexes because of their large, glowing centers and their signature winding arms of gas and dust, where thousands of glowing stars reside.

But some galaxies aren't so distinctive. They are big, but they have so few stars for their size that they appear very faint and diffuse. In fact, they are so diffuse that they look like giant cotton balls.

Observations by NASA's Hubble Space Telescope of one such galaxy have turned up an oddity that sets it apart from most other galaxies, even the diffuse-looking ones. It contains little, if any, dark matter, the underlying scaffolding upon which galaxies are built. Dark matter is an invisible substance that makes up the bulk of our universe and the invisible glue that holds visible matter in galaxies — stars and gas — together.

Called NGC 1052-DF2, this "ghostly" galaxy contains at most 1/400th the amount of dark matter that astronomers had expected. How it formed is a complete mystery. The galactic oddball is as large as our Milky Way, but the galaxy had escaped attention because it contains only 1/200th the number of stars as our galaxy.

Based on the colors of its globular clusters, NGC 1052-DF2 is about 10 billion years old. It resides about 65 million light-years away.

(More at HubbleSite.com)
 
Hubble Uncovers the Farthest Star Ever Seen

low_STSCI-H-p1813a-d-1280x720.png


Through a quirk of nature called “gravitational lensing,” a natural lens in space amplified a very distant star’s light. Astronomers using Hubble took advantage of this phenomenon to pinpoint the faraway star and set a new distance record for the farthest individual star ever seen. They also used the distant star to test one theory of dark matter, and to probe the make-up of a galaxy cluster. The team dubbed the star “Icarus,” after the Greek mythological character who flew too near the Sun on wings of feathers and wax that melted. Its official name is MACS J1149+2223 Lensed Star 1.

(More at HubbleSite.com)
 
NASA Awards Prestigious Postdoctoral Fellowships

low_STSCI-H-g-1822b-k1340x520.png


NASA has selected 24 new Fellows for its prestigious NASA Hubble Fellowship Program (NHFP). The program enables outstanding postdoctoral scientists to pursue independent research in any area of NASA Astrophysics, using theory, observation, experimentation, or instrument development. Each fellowship provides the awardee up to three years of support.

(More at HubbleSite.com)
 
Hubble Makes the First Precise Distance Measurement to an Ancient Globular Star Cluster

low_STSCI-H-p1824a-k-1340x520.png


When you want to know the size of a room, you use a measuring tape to calculate its dimensions.

But you can’t use a tape measure to cover the inconceivably vast distances in space. And, until now, astronomers did not have an equally precise method to accurately measure distances to some of the oldest objects in our universe – ancient swarms of stars outside the disk of our galaxy called globular clusters.

Estimated distances to our Milky Way galaxy’s globular clusters were achieved by comparing the brightness and colors of stars to theoretical models and observations of local stars. But the accuracy of these estimates varies, with uncertainties hovering between 10 percent and 20 percent.

Using NASA’s Hubble Space Telescope, astronomers were able to use the same sort of trigonometry that surveyors use to precisely measure the distance to NGC 6397, one of the closest globular clusters to Earth. The only difference is that the angles measured in Hubble’s camera are infinitesimal by earthly surveyors’ standards.

The new measurement sets the cluster’s distance at 7,800 light-years away, with just a 3 percent margin of error, and provides an independent estimate for the age of the universe. The Hubble astronomers calculated NGC 6397 is 13.4 billion years old and so formed not long after the big bang. The new measurement also will help astronomers improve models of stellar evolution.

(More at HubbleSite.com)
 
Hubble 28th Anniversary Image Captures Roiling Heart of Vast Stellar Nursery

low_M8-UVIS-crop-1500-180302.png


For 28 years, NASA’s Hubble Space Telescope has been delivering breathtaking views of the universe. Although the telescope has made more than 1.5 million observations of over 40,000 space objects, it is still uncovering stunning celestial gems.

The latest offering is this image of the Lagoon Nebula to celebrate the telescope’s anniversary. Hubble shows this vast stellar nursery in stunning unprecedented detail.

At the center of the photo, a monster young star 200,000 times brighter than our Sun is blasting powerful ultraviolet radiation and hurricane-like stellar winds, carving out a fantasy landscape of ridges, cavities, and mountains of gas and dust. This region epitomizes a typical, raucous stellar nursery full of birth and destruction.

(More at HubbleSite.com)
 
Stellar Thief Is the Surviving Companion to a Supernova

low_STSCI-H-p1820a-k-1340x520.png


In the fading afterglow of a supernova explosion, astronomers using NASA’s Hubble Space Telescope have photographed the first image of a surviving companion to a supernova. This is the most compelling evidence that some supernovas originate in double-star systems. The companion to supernova 2001ig’s progenitor star was no innocent bystander to the explosion—it siphoned off almost all of the hydrogen from the doomed star’s stellar envelope. SN 2001ig is categorized as a Type IIb stripped-envelope supernova, which is a relatively rare type of supernova in which most, but not all, of the hydrogen is gone prior to the explosion. Perhaps as many as half of all stripped-envelope supernovas have companions—the other half lose their outer envelopes via stellar winds.

(More at HubbleSite.com)
 
Hubble Detects Helium in the Atmosphere of an Exoplanet for the First Time

low_STSCI-H-p1827a-d-1280x720.png


There may be no shortage of balloon-filled birthday parties or people with silly high-pitched voices on the planet WASP-107b. That's because NASA's Hubble Space Telescope was used to detect helium in the atmosphere for the first time ever on a world outside of our solar system. The discovery demonstrates the ability to use infrared spectra to study exoplanet atmospheres.

Though as far back as 2000 helium was predicted to be one of the most readily-detectable gases on giant exoplanets, until now helium had not been found — despite searches for it. Helium was first discovered on the Sun, and is the second-most common element in the universe after hydrogen. It's one of the main constituents of the planets Jupiter and Saturn.

An international team of astronomers led by Jessica Spake of the University of Exeter, UK, used Hubble's Wide Field Camera 3 to discover helium. The atmosphere of WASP-107b must stretch tens of thousands of miles out into space. This is the first time that such an extended atmosphere has been discovered at infrared wavelengths.

(More at HubbleSite.com)
 
Astronomers Release Most Complete Ultraviolet-Light Survey of Nearby Galaxies

low_STSCI-H-p1827a-k-1340x520.png


Much of the light in the universe comes from stars, and yet, star formation is still a vexing question in astronomy.

To piece together a more complete picture of star birth, astronomers have used the Hubble Space Telescope to look at star formation among galaxies in our own cosmic back yard. The survey of 50 galaxies in the local universe, called the Legacy ExtraGalactic UV Survey (LEGUS), is the sharpest, most comprehensive ultraviolet-light look at nearby star-forming galaxies.

The LEGUS survey combines new Hubble observations with archival Hubble images for star-forming spiral and dwarf galaxies, offering a valuable resource for understanding the complexities of star formation and galaxy evolution. Astronomers are releasing the star catalogs for each of the LEGUS galaxies and cluster catalogs for 30 of the galaxies, as well as images of the galaxies themselves. The catalogs provide detailed information on young, massive stars and star clusters, and how their environment affects their development.

The local universe, stretching across the gulf of space between us and the great Virgo cluster of galaxies, is ideal for study because astronomers can amass a big enough sample of galaxies, and yet, the galaxies are close enough to Earth that Hubble can resolve individual stars. The survey will also help astronomers understand galaxies in the distant universe, where rapid star formation took place.

(More at HubbleSite.com)
 
Our Solar System’s First Known Interstellar Object Gets Unexpected Speed Boost

low_STScI-H-p1825a-k1340x520.png


Using observations from NASA’s Hubble Space Telescope and ground-based observatories, an international team of scientists have confirmed `Oumuamua (oh-MOO-ah-MOO-ah), the first known interstellar object to travel through our solar system, got an unexpected boost in speed and shift in trajectory as it passed through the inner solar system last year.

(More at HubbleSite.com)
 
Hubble and Gaia Team Up to Fuel Cosmic Conundrum

low_STSCI-H-p1834a-k-1340x520.png


Using the powerful Hubble and Gaia space telescopes, astronomers just took a big step toward finding the answer to the Hubble constant, one of the most important and long-sought numbers in all of cosmology. This number measures the rate at which the universe is expanding since the big bang, 13.8 billion years ago. The constant is named for astronomer Edwin Hubble, who nearly a century ago discovered that the universe was uniformly expanding in all directions. Now, researchers have calculated this number with unprecedented accuracy.

Intriguingly, the new results further intensify the discrepancy between measurements for the expansion rate of the nearby universe, and those of the distant, primeval universe — before stars and galaxies even existed. Because the universe is expanding uniformly, these measurements should be the same. The so-called “tension” implies that there could be new physics underlying the foundations of the universe.

(More at HubbleSite.com)
 
Saturn and Mars Team Up to Make Their Closest Approaches to Earth in 2018

low_STSCI-H-p1829a-k-1340x520.png


As Saturn and Mars ventured close to Earth, Hubble captured their portraits in June and July 2018, respectively. The telescope photographed the planets near opposition, when the Sun, Earth and an outer planet are lined up, with Earth sitting in between the Sun and the outer planet. Around the time of opposition, a planet is at its closest distance to Earth in its orbit. Hubble viewed Saturn on June 6, when the ringed world was approximately 1.36 billion miles from Earth, as it approached a June 27 opposition. Mars was captured on July 18, at just 36.9 million miles from Earth, near its July 27 opposition. Hubble saw the planets during summertime in Saturn’s northern hemisphere and springtime in Mars’ southern hemisphere. The increase in sunlight in Saturn’s northern hemisphere heated the atmosphere and triggered a large storm that is now disintegrating in Saturn’s northern polar region. On Mars, a spring dust storm erupted in the southern hemisphere and ballooned into a global event enshrouding the entire planet.

(More at HubbleSite.com)
 
Astronomers Uncover New Clues to the Star that Wouldn't Die

low_PR1833-Eta-Car-SN-velocities.jpg


It takes more than a massive outburst to destroy the mammoth star Eta Carinae, one of the brightest known stars in the Milky Way galaxy. About 170 years ago, Eta Carinae erupted, unleashing almost as much energy as a standard supernova explosion.

Yet that powerful blast wasn’t enough to obliterate the star, and astronomers have been searching for clues to explain the outburst ever since. Although they cannot travel back to the mid-1800s to witness the actual eruption, they can watch a rebroadcast of part of the event — courtesy of some wayward light from the explosion. Rather than heading straight toward Earth, some of the light from the outburst rebounded or “echoed” off of interstellar dust, and is just now arriving at Earth. This effect is called a light echo.

The surprise is that new measurements of the 19th-century eruption, made by ground-based telescopes, reveal material expanding with record-breaking speeds of up to 20 times faster than astronomers expected. The observed velocities are more like the fastest material ejected by the blast wave in a supernova explosion, rather than the relatively slow and gentle winds expected from massive stars before they die.

Based on the new data, researchers suggest that the 1840s eruption may have been triggered by a prolonged stellar brawl among three rowdy sibling stars, which destroyed one star and left the other two in a binary system. This tussle may have culminated with a violent explosion when Eta Carinae devoured one of its two companions, rocketing more than 10 times the mass of our Sun into space. The ejected mass created gigantic bipolar lobes resembling the dumbbell shape seen in present-day images.

(More at HubbleSite.com)
 
Hubble Paints Picture of the Evolving Universe

low_STSCI-H-p1835a-b-4000x960.png


Astronomers have just assembled one of the most comprehensive portraits yet of the universe’s evolutionary history, based on a broad spectrum of observations by the Hubble Space Telescope and other space and ground-based telescopes. In particular, Hubble’s ultraviolet vision opens a new window on the evolving universe, tracking the birth of stars over the last 11 billion years back to the cosmos’ busiest star-forming period, about 3 billion years after the big bang. This photo encompasses a sea of approximately 15,000 galaxies — 12,000 of which are star-forming — widely distributed in time and space.

(More at HubbleSite.com)
 
Astronomers Find First Evidence of Possible Moon Outside Our Solar System

low_STScI-H-p1845a-k1340x520.png


Our solar system has eight major planets, and nearly 200 moons. Though astronomers have to date found nearly 4,000 planets orbiting other stars, no moons have yet been found. That hasn't been for any lack of looking, it’s just that moons are smaller than planets and therefore harder to detect.

The Hubble and Kepler space telescopes found evidence for what could be a giant moon accompanying a gas-giant planet that orbits the star Kepler-1625, located 8,000 light-years away in the constellation Cygnus. The moon may be as big as Neptune and it orbits a planet several times more massive than Jupiter.

If our solar system is a typical example, moons may outnumber planets in our galaxy by at least an order of magnitude or more. This promises a whole new frontier for characterizing the nature of moons and their potential for hosting life as we know it.

The exomoon at Kepler-1625b is too far away to be directly photographed. Its presence is inferred when it passes in front of the star, momentarily dimming its light. Such an event is called a transit. However, the "footprint" of the moon's transit signal is weaker than for the host planet.

The researchers caution that the moon’s presence will need to be conclusively proven by follow-up Hubble observations.

(More at HubbleSite.com)
 
Science Release: Hubble finds compelling evidence for a moon outside the Solar System

heic1817a.jpg

Using the NASA/ESA Hubble Space Telescope and older data from the Kepler Space Telescope two astronomers have found the first compelling evidence for a moon outside our own Solar System. The data indicate an exomoon the size of Neptune, in a stellar system 8000 light-years from Earth. The new results are presented in the journal Science Advances.

(More at HubbleSite.com)
 
Back
Top