Space Hubble Telescope News

NASA Great Observatories Find Candidate for Most Distant Galaxy Yet Known

low_keystone.png


By combining the power of NASA's Hubble Space Telescope, Spitzer Space Telescope, and one of nature's own natural "zoom lenses" in space, astronomers have set a new distance record for finding the farthest galaxy yet seen in the universe. The diminutive blob, which is only a tiny fraction of the size of our Milky Way galaxy, offers a peek back into a time when the universe was 3 percent of its present age of 13.7 billion years. The newly discovered galaxy, named MACS0647-JD, is observed 420 million years after the big bang. Its light has traveled 13.3 billion years to reach Earth.

This is the latest discovery from a large program that uses natural zoom lenses to reveal distant galaxies in the early universe. The Cluster Lensing And Supernova survey with Hubble (CLASH) is using massive galaxy clusters as cosmic telescopes to magnify distant galaxies behind them, an effect called gravitational lensing.

(More at HubbleSite.com)
 
A Multi-Wavelength View of Radio Galaxy Hercules A

low_keystone.png


Spectacular jets powered by the gravitational energy of a supermassive black hole in the core of the elliptical galaxy Hercules A illustrate the combined imaging power of two of astronomy's cutting-edge tools, the Hubble Space Telescope's Wide Field Camera 3, and the recently upgraded Karl G. Jansky Very Large Array (VLA) radio telescope in New Mexico.

(More at HubbleSite.com)
 
Hubble Provides First Census of Galaxies Near Cosmic Dawn

low_keystone.png


Using NASA's Hubble Space Telescope, astronomers have uncovered a previously unseen population of seven primitive galaxies that formed more than 13 billion years ago, when the universe was less than 3 percent of its present age. The deepest images to date from Hubble yield the first statistically robust sample of galaxies that tells how abundant they were close to the era when galaxies first formed. The results show a smooth decline in the number of galaxies with increasing look-back time to about 450 million years after the big bang. The observations support the idea that galaxies assembled continuously over time and also may have provided enough radiation to reheat, or reionize, the universe a few hundred million years after the big bang. These pioneering observations blaze a trail for future exploration of this epoch by NASA's next-generation spacecraft, the James Webb Space Telescope. Looking deeper into the universe also means peering farther back in time. The universe is now 13.7 billion years old. The newly discovered galaxies are seen as they looked 350 million to 600 million years after the big bang. Their light is just arriving at Earth now.

The public is invited to participate in a "First Census of Galaxies Near Cosmic Dawn" webinar, in which key astronomers of the Hubble Ultra Deep Field 2012 team will discuss how they obtained their result and what it tells us about galaxy formation in the very early universe. Participants will be able to send in questions for the panel of experts to discuss. The webinar will be broadcast at 1:00 pm EST on Friday, December 14, 2012.

To participate in the webinar, please visit HubbleSite Channel on Youtube or Hubble Space Telescope Google+ page .

(More at HubbleSite.com)
 
A Cosmic Holiday Ornament, Hubble-Style

low_keystone.png


'Tis the season for holiday decorating and tree-trimming. Not to be left out, astronomers using NASA's Hubble Space Telescope have photographed a festive-looking nearby planetary nebula called NGC 5189. The intricate structure of this bright gaseous nebula resembles a glass-blown holiday ornament with a glowing ribbon entwined.

(More at HubbleSite.com)
 
Hubble Reveals Rogue Planetary Orbit for Fomalhaut b

low_keystone.png


Newly released Hubble Space Telescope images of a vast debris disk encircling the nearby star Fomalhaut, and of a mysterious planet circling it, may provide forensic evidence of a titanic planetary disruption in the system. Astronomers are surprised to find that the debris belt is wider than previously known, spanning a gulf of space from 14 billion miles to nearly 20 billion miles from the star. Even more surprisingly, the latest Hubble images have allowed a team of astronomers to calculate that the planet follows an unusual elliptical orbit that carries it on a potentially destructive path through the vast dust ring.

The planet, called Fomalhaut b, swings as close to its star as 4.6 billion miles, and the outermost point of its orbit is 27 billion miles away from the star. The orbit was re-calculated from the newest Hubble observation made in 2012. The Fomalhaut team led by Paul Kalas (University of California, Berkeley) considers this circumstantial evidence that there may be other planet-like bodies in the system that gravitationally disrupted Fomalhaut b to place it in such a highly eccentric orbit. His team is presenting their finding today at the 221st meeting of the American Astronomical Society in Long Beach, Calif.

(More at HubbleSite.com)
 
Amateur and Professional Astronomers Team Up to Create a Cosmological Masterpiece

low_keystone.png


Working with astronomical image processors at the Space Telescope Science Institute in Baltimore, Md., renowned astrophotographer Robert Gendler has taken science data from the Hubble Space Telescope archive and combined it with his own ground-based observations to assemble a photo illustration of the magnificent spiral galaxy M106.

Gendler retrieved archival Hubble images of M106 to assemble a mosaic of the center of the galaxy. He then used his own and fellow astrophotographer Jay GaBany's observations of M106 to combine with the Hubble data in areas where there was less coverage, and finally, to fill in the holes and gaps where no Hubble data existed.

(More at HubbleSite.com)
 
Strobe-like Flashes Discovered in a Suspected Binary Protostar

low_keystone.png


A mysterious infant star, swaddled inside a dusty blanket, behaves like a police strobe light. The newly discovered object offers clues into the early stages of star formation, when a lot of gas and dust is being rapidly sucked into a newly forming binary star. Every 25.34 days, the object, designated LRLL 54361, unleashes a burst of light. The flashes may be due to material suddenly being dumped onto the growing protostars, unleashing a blast of radiation each time the stars get close to each other in their orbits. The phenomenon has been seen in later stages of star birth, but never in such a young system, nor with such intensity and regularity.

LRLL 54361 was discovered by the Spitzer Space Telescope as a variable object inside the star-forming region IC 348, located 950 light-years away. The Hubble Space Telescope was used to confirm the Spitzer observations and revealed the detailed structure around the protostar. Hubble resolved two cavities that are traced by light scattered off their edges above and below a dusty disk. Astronomers will continue monitoring LRLL 54361 using other telescopes, including the Herschel Space Telescope, and hope to eventually obtain more direct measurements of the binary star and its orbit.

(More at HubbleSite.com)
 
Hubble Sees a Horsehead of a Different Color

low_keystone.png


Unlike other celestial objects there is no question how the Horsehead Nebula got its name. This iconic silhouette of a horse's head and neck pokes up mysteriously from what look like whitecaps of interstellar foam. The nebula has graced astronomy books ever since its discovery over a century ago. But Hubble's infrared vision shows the horse in a new light. The nebula, shadowy in optical light, appears transparent and ethereal when seen at infrared wavelengths. This pillar of tenuous hydrogen gas laced with dust is resisting being eroded away by the radiation from a nearby star. The nebula is a small part of a vast star-forming complex in the constellation Orion. The Horsehead will disintegrate in about 5 million years.

As part of Hubble's 23rd anniversary Horsehead Nebula release, amateur astronomers around the world were invited to send in their Horsehead Nebula photos. Visit the Hubble Heritage Horsehead Image Release to view the contributions via Flickr and Tumblr and to send us your own image.

(More at HubbleSite.com)
 
NASA's Hubble Space Telescope Reveals the Ring Nebula's True Shape

low_keystone.png


The distinctive shape of the Ring Nebula, the glowing shroud around a dying Sun-like star, makes it a popular celestial object that appears in many astronomy books. New observations of the Ring Nebula by NASA's Hubble Space Telescope, however, reveal a new twist on an iconic nebula.

The Hubble images offer the best view yet of the nebula, revealing a complex structure. The observations have allowed astronomers to construct the most precise three-dimensional model of the glowing gas shroud, called a planetary nebula. Based on the new observations, the Hubble research team suggests that the ring wraps around a blue football-shaped structure that protrudes out of opposite sides of the ring. The nebula is tilted toward Earth so that astronomers see the ring face-on.

(More at HubbleSite.com)
 
Rare Stellar Alignment Offers Opportunity to Hunt for Planets

low_keystone.png


The ancients thought that stars were fixed pinpoints of light on the sky. Today we know that they are all moving, like fish in a pond. This so-called proper motion is so small that it is not noticeable to the human eye over a single lifetime. But Hubble can precisely track stellar motions to razor-sharp precision. Not surprisingly the nearest star to our Sun, Proxima Centauri, is one of the fastest moving across the sky. Hubble astronomers have found that it will pass in front of two far-more distant background stars, once in 2014 and again in 2016. This will afford a very rare opportunity to see how Proxima's gravity warps the image of the background stars by bending their light. This effect, called gravitational lensing, can be used to estimate Proxima Centauri's mass and establish the presence of any planets orbiting the star.

(More at HubbleSite.com)
 
Colliding Galaxy Pair Takes Flight

low_keystone.png


What looks like a celestial hummingbird is really the result of a collision between a spiral and an elliptical galaxy at a whopping 326 million light- years away. The flat disk of the spiral NGC 2936 is warped into the profile of a bird by the gravitational tug of the companion NGC 2937. The object was first cataloged as a "peculiar galaxy" by Halton Arp in the 1960s. This interacting galaxy duo is collectively called Arp 142.

(More at HubbleSite.com)
 
Comet ISON Brings Holiday Fireworks

low_keystone.png


This July 4th, the solar system is showing off some fireworks of its own. Superficially resembling a skyrocket, Comet ISON is hurtling toward the Sun at a whopping 48,000 miles per hour. Unlike a firework, the comet is not combusting, but in fact is pretty cold. Its skyrocket-looking tail is really a streamer of gas and dust bleeding off the icy nucleus. The video shows a sequence of Hubble observations taken over a 43-minute span, compressed into just five seconds. The comet travels 34,000 miles during the exposure sequence.

(More at HubbleSite.com)
 
Hubble Shows Link Between Stars' Ages and Their Orbits in Dense Cluster

low_keystone.png


Billions of years ago in our Milky Way galaxy, long before the Earth was born, swarms of stars formed in giant clusters. Each grouping of stars, called a globular cluster, was held together by the mutual gravity of its stars. These globular star clusters became the homesteaders of our Milky Way.

Astronomers have probed the galaxy's globular clusters using many telescopes, including NASA's Hubble Space Telescope, to dig into the Milky Way's past and uncover what was happening in these early, formative years. Recent stellar archaeological excavations with Hubble into one such globular cluster, 47 Tucanae, have allowed astronomers to piece together a timeline of the stars' births.

(More at HubbleSite.com)
 
Hubble Takes Movies of Space Slinky

low_keystone.png


The universe is so big, and it takes so long for most celestial objects to change, that it is rare a telescope can catch something in motion. It helps if the target is moving at nearly the speed of light, and that the Hubble Space Telescope's crystal-clear view can catch subtle changes in one-tenth the time it might take for a ground-based telescope. Astronomers collected 500 Hubble pictures, taken over 13 years to make a movie flipbook of a blowtorch-like jet of gas blasted from the vicinity of a supermassive black hole. The black hole resides in the center of the galaxy M87. The jet has been known about for nearly a century. But the new Hubble movie provides a look at the jet's dynamics. The movie shows that the hot plasma is spiraling along magnetic field lines generated by the 7-billion-solar-mass black hole. These so-called extragalactic jets are seen elsewhere in the universe, but this comparatively nearby jet is offering a detailed look at what powers and aligns them. When Lick Observatory astronomer Heber Curtis first saw the jet in 1918 he described it as "a curious straight ray." Little might Curtis have imagined that we'd someday follow it blazing across space.

(More at HubbleSite.com)
 
Hubble Sees a Cosmic Caterpillar

low_keystone.png


This light-year-long knot of interstellar gas and dust resembles a caterpillar on its way to a feast. But the meat of the story is not only what this cosmic caterpillar eats for lunch, but also what's eating it. Harsh winds from extremely bright stars are blasting ultraviolet radiation at this 'wanna-be' star and sculpting the gas and dust into its long shape.

(More at HubbleSite.com)
 
Hubble Watches Super Star Create Holiday Light Show

low_keystone.png


This festive NASA Hubble Space Telescope image resembles a holiday wreath made of sparkling lights. The bright southern hemisphere star RS Puppis, at the center of the image, is swaddled in a gossamer cocoon of reflective dust illuminated by the glittering star. RS Puppis rhythmically brightens and dims over a six-week cycle. It is one of the most luminous in the class of so-called Cepheid variable stars. The nebula flickers in brightness as pulses of light from the Cepheid propagate outwards. Hubble took a series of photos of light flashes rippling across the nebula in a phenomenon known as a "light echo."

(More at HubbleSite.com)
 
Hubble's First Frontier Field Finds Thousands of Unseen, Faraway Galaxies

low_keystone.png


With the help of a natural "zoom lens" in space, Hubble astronomers are looking farther than anyone has before. The ambitious, collaborative, multiyear program among NASA's Great Observatories is called The Frontier Fields. The first of a set of unprecedented, super-deep views of the universe contain images of some of the intrinsically faintest and youngest galaxies ever detected. This is just the first of several primary target fields in the program. The immense gravity in this foreground galaxy cluster, Abell 2744, warps space to brighten and magnify images of far-more-distant background galaxies as they looked over 12 billion years ago, not long after the big bang. The Hubble exposure reveals nearly 3,000 of these background galaxies interleaved with images of hundreds of foreground galaxies in the cluster.

(More at HubbleSite.com)
 
Hubble Images Become Tactile 3-D Experience for the Blind

low_keystone.png


Three-dimensional printers are transforming the business, medical, and consumer landscape by creating a vast variety of objects, including airplane parts, football cleats, lamps, jewelry, and even artificial human bones.

Now astronomers at the Space Telescope Science Institute in Baltimore, Md., are experimenting with the innovative technology to transform astronomy education by turning images from NASA's Hubble Space Telescope into tactile 3-D pictures for people who cannot explore celestial wonders by sight. The 3-D print design is also useful and intriguing for sighted people who have different learning styles. In the 3-D representations, stars, filaments, gas, and dust shown in Hubble images of the bright star cluster NGC 602 have been transformed through 3-D printing into textures, appearing as raised open circles, lines, and dots in the 3-D printout. These features also have different heights to correspond with their brightness.

(More at HubbleSite.com)
 
Electronic Book for Students with Visual Impairments Reaches for the Stars

low_keystone.png


This huge Hubble Space Telescope mosaic, spanning a width of 600 light-years, shows a star factory of more the 800,000 stars being born. The stars are embedded inside the Tarantula Nebula, a vibrant region of star birth that resides 170,000 light-years away in the Large Magellanic Cloud, a small, satellite galaxy of our Milky Way. Hubble's near-infrared sensitivity allows astronomers to see behind clouds of dust in the nebula to unveil where the newborn stars are clustered.

(More at HubbleSite.com)
 
Hubble Views Stellar Genesis in the Southern Pinwheel

low_keystone.png


The vibrant magentas and blues in this Hubble image of the barred spiral galaxy M83 reveal that the galaxy is ablaze with star formation. The galactic panorama unveils a tapestry of the drama of stellar birth and death. The galaxy, also known as the Southern Pinwheel, lies 15 million light-years away in the constellation Hydra.

This image is being used to support a citizen science project titled STAR DATE: M83. The primary goal is to estimate ages for approximately 3,000 star clusters. Amateur scientists will use the presence or absence of the pink hydrogen emission, the sharpness of the individual stars, and the color of the clusters to estimate ages. Participants will measure the sizes of the star clusters and any associated emission nebulae. Finally, the citizen scientists will "explore" the image, identifying a variety of objects ranging from background galaxies to supernova remnants to foreground stars. STAR DATE: M83 is a joint collaborative effort between the Space Telescope Science Institute and Zooniverse, creators of several citizen science projects including Galaxy Zoo, Planet Hunters, and the Andromeda Project (go to www.zooniverse.org to see the full list). The M83 project is scheduled to launch on Monday, January 13, 2014. People interested in exploring this remarkable image in more detail, and in directly participating in a science project, can visit Index of /.

(More at HubbleSite.com)
 
Back
Top