Space Hubble Telescope News

A Galactic Spectacle

low_STSCI-H-p1025-k-1340x520.png


A beautiful new image of two colliding galaxies has been released by NASA's Great Observatories. The Antennae galaxies, located about 62 million light-years from Earth, are shown in this composite image from the Chandra X-ray Observatory (blue), the Hubble Space Telescope (gold and brown), and the Spitzer Space Telescope (red). The imaging data were taken in 1999, 2003, 2004, and 2005. The Antennae galaxies take their name from the long antenna-like "arms," seen in wide-angle views of the system. These features were produced by tidal forces generated in the collision.

(More at HubbleSite.com)
 
Cosmic Ice Sculptures: Dust Pillars in the Carina Nebula

low_STSCI-H-p1029-k-1340x520.png


Enjoying a frozen treat on a hot summer day can leave a sticky mess as it melts in the Sun and deforms. In the cold vacuum of space, there is no edible ice cream, but there is radiation from massive stars that is carving away at cold molecular clouds, creating bizarre, fantasy-like structures. These one-light-year-tall pillars of cold hydrogen and dust, imaged by the Hubble Space Telescope, are located in the Carina Nebula.

This image is a composite of Hubble observations taken of the Carina Nebula region in 2005 in hydrogen light (light emitted by hydrogen atoms) along with observations taken in oxygen light (light emitted by oxygen atoms) in 2010, both times with Hubble's Advanced Camera for Surveys. The immense Carina Nebula is an estimated 7,500 light-years away in the southern constellation Carina.

(More at HubbleSite.com)
 
Hubble Supernova Bubble Resembles Holiday Ornament

low_STSCI-H-p1027-k-1340x520.png


A delicate sphere of gas, photographed by NASA's Hubble Space Telescope, floats serenely in the depths of space. The pristine shell, or bubble, is the result of gas that is being shocked by the expanding blast wave from a supernova. Called SNR 0509-67.5 (or SNR 0509 for short), the bubble is the visible remnant of a powerful stellar explosion in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light-years from Earth. Ripples in the shell's surface may be caused by either subtle variations in the density of the ambient interstellar gas, or possibly driven from the interior by pieces of the ejecta. The bubble-shaped shroud of gas is 23 light-years across and is expanding at more than 11 million miles per hour (5,000 kilometers per second).

Hubble's Advanced Camera for Surveys observed the supernova remnant on Oct. 28, 2006, with a filter that isolates light from glowing hydrogen seen in the expanding shell. These observations were then combined with visible-light images of the surrounding star field that were imaged with Hubble's Wide Field Camera 3 on Nov. 4, 2010.

(More at HubbleSite.com)
 
NASA's Great Observatories Celebrate International Year of Astronomy

low_STSCI-H-p0928a-k-1340x520.png


A never-before-seen view of the turbulent heart of our Milky Way galaxy is being unveiled by NASA on Nov. 10. This event will commemorate the 400 years since Galileo first turned his telescope to the heavens in 1609. In celebration of this International Year of Astronomy, NASA is releasing images of the galactic center region as seen by its Great Observatories to more than 150 planetariums, museums, nature centers, libraries, and schools across the country.

(More at HubbleSite.com)
 
The Dawn of a New Era for Supernova 1987A

low_STSCI-H-p1708a-k-1340x520.png


In February 1987, on a mountaintop in Chile, telescope operator Oscar Duhalde stood outside the observatory at Las Campanas and looked up at the clear night sky. There, in a hazy-looking patch of brightness in the sky — the Large Magellanic Cloud (LMC), a neighboring galaxy - was a bright star he hadn't noticed before.

That same night, Canadian astronomer Ian Shelton was at Las Campanas observing stars in the Large Magellanic Cloud. As Shelton was studying a photographic plate of the LMC later that night, he noticed a bright object that he initially thought was a defect in the plate. When he showed the plate to other astronomers at the observatory, he realized the object was the light from a supernova. Duhalde announced that he saw the object too in the night sky. The object turned out to be Supernova 1987A, the closest exploding star observed in 400 years. Shelton had to notify the astronomical community of his discovery. There was no Internet in 1987, so the astronomer scrambled down the mountain to the nearest town and sent a message to the International Astronomical Union's Bureau for Astronomical Telegrams, a clearing house for announcing astronomical discoveries.

Since that finding, an armada of telescopes, including the Hubble Space Telescope, has studied the supernova. Hubble wasn't even in space when SN 1987A was found. The supernova, however, was one of the first objects Hubble observed after its launch in 1990. Hubble has continued to monitor the exploded star for nearly 30 years, yielding insight into the messy aftermath of a star's violent self-destruction. Hubble has given astronomers a ring-side seat to watch the brightening of a ring around the dead star as the supernova blast wave slammed into it.

(More at HubbleSite.com)
 
Observatories Combine to Crack Open the Crab Nebula

low_STSCI-H-p1721a-k-1340x520.png


In the summer of the year 1054 AD, Chinese astronomers saw a new "guest star," that appeared six times brighter than Venus. So bright in fact, it could be seen during the daytime for several months. Halfway around the world, Native Americans made pictographs of a crescent moon with the bright star nearby that some think may also have been a record of the supernova.

This "guest star" was forgotten about until 700 years later with the advent of telescopes. Astronomers saw a tentacle-like nebula in the place of the vanished star and called it the Crab Nebula. Today we know it as the expanding gaseous remnant from a star that self-detonated as a supernova, briefly shining as brightly as 400 million suns. The explosion took place 6,500 light-years away. If the blast had instead happened 50 light-years away it would have irradiated Earth, wiping out most life forms.

In the late 1960s astronomers discovered the crushed heart of the doomed star, an ultra-dense neutron star that is a dynamo of intense magnetic field and radiation energizing the nebula. Astronomers therefore need to study the Crab Nebula across a broad range of electromagnetic radiation, from X-rays to radio waves. This composite picture from five observatories captures the complexity of this tortured-looking supernova remnant.

(More at HubbleSite.com)
 
Hubble Reveals Dynamic Atmospheres of Uranus and Neptune

low_STSCI-H-p1906a-k-1340x520.png


The two major planets beyond Saturn have only been visited once by a spacecraft, albeit briefly. NASA's Voyager 2 spacecraft swung by Uranus in 1986, and Neptune in 1989. Our robotic deep-space tourist snapped the only close-up, detailed images of these monstrous worlds. For Neptune, the images revealed a planet with a dynamic atmosphere with two mysterious dark vortices. Uranus, however, appeared featureless. But these views were only brief snapshots. They couldn't capture how the planets' atmospheres change over time, any more than a single snapshot of Earth could tell meteorologists about weather behavior. And, they go through protracted seasonal changes in their multi-decades-long orbits. Ever since the Voyager encounter, the Hubble Space Telescope has provided an opportunity to monitor these worlds like a diligent weatherman.

Since Hubble's launch in 1990, astronomers have used it to amass an album of outer planet images. Yearly monitoring of these giant worlds is now allowing astronomers to study long-term seasonal changes, as well as capture transitory weather patterns. One such elusive event is yet another dark storm on Neptune, shown in the latest Hubble image of the planet (right).

The telescope's new snapshot of Uranus (left) shows that the ice giant is not a planetary wallflower. A vast bright polar cap across the north pole dominates the image. The cap, which may form due to seasonal changes in atmospheric flow, has become much more prominent than in previous observations dating back to the Voyager 2 flyby, when the planet, in the throes of winter, looked bland.

(More at HubbleSite.com)
 
Hubble IMAX Film Takes Viewers on Ride Through Space and Time

low_STSCI-H-p0416a-k-1340x520.png


Take a virtual ride to the outer reaches of the universe and explore 10 billion years of galactic history, from fully formed and majestic spiral galaxies to disheveled collections of stars just beginning to form.

This unforgettable cosmic journey is presented in the award-winning IMAX short film, "Hubble: Galaxies Across Space and Time," which transforms images and data from NASA's Hubble Space Telescope into a voyage that sweeps viewers across the cosmos. Using the 650-megapixel-mosaic image created by the Great Observatories Origins Deep Survey (GOODS), more than 11,000 galaxy images were extracted and assembled into an accurate 3-D model for the three-minute movie. The large-format film was created by a team of Hubble image and visualization experts in the Office of Public Outreach at the Space Telescope Science Institute (STScI) in Baltimore, Md. The film was directed by Frank Summers, an astrophysicist and science visualization specialist.

(More at HubbleSite.com)
 
Hubble Celebrates 15th Anniversary with Spectacular New Images

low_STScI-H-p0512a-k-1340x520.png


During the 15 years NASA's Hubble Space Telescope has orbited the Earth, it has taken more than 700,000 photos of the cosmos; images that have awed, astounded and even confounded astronomers and the public.

NASA released new views today of two of the most well-known objects Hubble has ever observed: the Whirlpool Galaxy (spiral galaxy M51)
and the Eagle Nebula
. These new images are among the largest and sharpest Hubble has ever taken. They were made with Hubble's newest camera, the Advanced Camera for Surveys (ACS). The images are so incredibly sharp, they could be enlarged to billboard size and still retain stunning details.

For the 15th anniversary, scientists used the ACS to record a new region of the eerie-looking Eagle Nebula. The Eagle Nebula image reveals a tall, dense tower of gas being sculpted by ultraviolet light from a group of massive, hot stars. The new Whirlpool Galaxy image showcases the spiral galaxy's classic features, from its curving arms, where newborn stars reside, to its yellowish central core that serves as home for older stars. A feature of considerable interest is the companion galaxy located at the end of one of the spiral arms.

(More at HubbleSite.com)
 
NASA's Hubble Looks for Possible Moon Resources

low_STScI-H-p0529a-k-1340x520.png


NASA has enlisted the Hubble Space Telescope's unique "vision" capabilities for making a new class of science observations of the Moon that support future human exploration. Hubble's exquisite resolution and sensitivity to ultraviolet light, which is reflected off the Moon's surface materials, have allowed Hubble to begin to search for the presence of important minerals that may be critical for the establishment of sustained human presence on the Moon. Preliminary assessment of these new Hubble observations suggests new patterns in the abundance of titanium and iron oxides, both of which are sources of oxygen, a key ingredient for life, and an essential ingredient for human exploration. Hubble's Advanced Camera for Surveys imaged Aristarchus crater and nearby Schroter's Valley rille on Aug. 21, 2005. These images reveal fine-scale details of the crater's interior and exterior in ultraviolet and visible wavelengths at a scale of approximately 165 to 330 feet (50 to 100 meters) per picture element. These new ultraviolet-light observations, after being compared and calibrated against Hubble's ultraviolet-light observations of the Apollo 15 and 17 landing regions, will be used to quantify abundances of the titanium-bearing oxide ilmenite.

(More at HubbleSite.com)
 
A Giant Hubble Mosaic of the Crab Nebula

low_STScI-H-p0537a-k-1340x520.png


The Crab Nebula is a six-light-year-wide expanding remnant of a star's supernova explosion. Japanese and Chinese astronomers recorded this violent event nearly 1,000 years ago in 1054, as did, almost certainly, Native Americans. This composite image was assembled from 24 individual exposures taken with the NASA Hubble Space Telescope's Wide Field and Planetary Camera 2 in October 1999, January 2000, and December 2000. It is one of the largest images taken by Hubble and is the highest resolution image ever made of the entire Crab Nebula.

(More at HubbleSite.com)
 
Super Star Clusters in the Antennae Galaxies

low_STSCI-H-p-0646a-k-1340x520.png


This new NASA Hubble Space Telescope image of the Antennae galaxies is the sharpest yet of this merging pair of galaxies. During the course of the collision, billions of stars will be formed. The brightest and most compact of these star birth regions are called super star clusters. The new image allows astronomers to better distinguish between the stars and super star clusters created in the collision of two spiral galaxies.

(More at HubbleSite.com)
 
Celestial Season's Greetings from Hubble

Swirls of gas and dust reside in this ethereal-looking region of star formation imaged by NASA's Hubble Space Telescope. This majestic view of LH 95, located in the Large Magellanic Cloud, reveals a region where low-mass, infant stars and their much more massive stellar neighbors reside. A shroud of blue haze gently lingers amid the stars. The image was taken in March 2006 with Hubble's Advanced Camera for Surveys.

(More at HubbleSite.com)
 
Hubble Observes Infant Stars in Nearby Galaxy

low_STSCI-H-p0704a-k-1340x520.png


This new image taken with NASA's Hubble Space Telescope depicts bright, blue, newly formed stars that are blowing a cavity in the center of a star-forming region in the Small Magellanic Cloud.

(More at HubbleSite.com)
 
The Carina Nebula: Star Birth in the Extreme

low_STSCI-H-p0716a-k-1340x520.png


In celebration of the 17th anniversary of the launch and deployment of NASA's Hubble Space Telescope, a team of astronomers is releasing one of the largest panoramic images ever taken with Hubble's cameras. It is a 50-light-year-wide view of the central region of the Carina Nebula where a maelstrom of star birth - and death - is taking place. This image is a mosaic of the Carina Nebula assembled from 48 frames taken with Hubble's Advanced Camera for Surveys. The Hubble images were taken in the light of neutral hydrogen during March and July 2005. Color information was added with data taken in December 2001 and March 2003 at the Cerro Tololo Inter-American Observatory in Chile. Red corresponds to sulfur, green to hydrogen, and blue to oxygen emission.

(More at HubbleSite.com)
 
Holiday Wishes from the Hubble Space Telescope

low_STSCI-H-p0741a-k-1340x520.png


Resembling festive lights on a holiday wreath, this NASA/ESA Hubble Space Telescope image of the nearby spiral galaxy M74 is an iconic reminder of the impending season. Bright knots of glowing gas light up the spiral arms, indicating a rich environment of star formation. M74 is located roughly 32 million light-years away in the direction of the constellation Pisces, the Fish. The image is a composite of Advanced Camera for Surveys data taken in 2003 and 2005.

(More at HubbleSite.com)
 
Hubble Snaps a Splendid Planetary Nebula

low_STSCI-H-p0905a-k-1340x520.png


The Hubble Space Telescope has imaged striking details of the famed planetary nebula designated NGC 2818, which lies in the southern constellation of Pyxis (the Compass). The spectacular structure of the planetary nebula contains the outer layers of a star that were expelled into interstellar space. The glowing gaseous shrouds in the nebula were shed by the central star after it ran out of fuel to sustain the nuclear reactions in its core.

This Hubble image was taken in November 2008 with the Wide Field Planetary Camera 2. The colors in the image represent a range of emissions coming from the clouds of the nebula: red represents nitrogen, green represents hydrogen, and blue represents oxygen.

(More at HubbleSite.com)
 
Quadruple Saturn Moon Transit Snapped by Hubble

low_STSCI-H-p0912a-k-1340x520.png


Saturn's comparatively paper-thin rings are tilted edge on to Earth every 15 years. Because the orbits of Saturn's major satellites are in the ring plane, too, this alignment gives astronomers a rare opportunity to capture a truly spectacular parade of celestial bodies crossing the face of Saturn. Leading the parade is Saturn's giant moon Titan - larger than the planet Mercury. The frigid moon's thick nitrogen atmosphere is tinted orange with the smoggy byproducts of sunlight interacting with methane and nitrogen. Several of the much smaller icy moons that are closer in to the planet line up along the upper edge of the rings. Hubble's exquisite sharpness also reveals Saturn's banded cloud structure.

(More at HubbleSite.com)
 
Hubble Opens New Eyes on the Universe

low_STSCI-H-p0925a-k-1340x520.png


NASA's Hubble Space Telescope is back in business, ready to uncover new worlds, peer ever deeper into space, and even map the invisible backbone of the universe. The first snapshots from the refurbished Hubble showcase the 19-year-old telescope's new vision. Topping the list of exciting new views are colorful multi-wavelength pictures of far-flung galaxies, a densely packed star cluster, an eerie "pillar of creation," and a "butterfly" nebula. With its new imaging camera, Hubble can view galaxies, star clusters, and other objects across a wide swath of the electromagnetic spectrum, from ultraviolet to near-infrared light. A new spectrograph slices across billions of light-years to map the filamentary structure of the universe and trace the distribution of elements that are fundamental to life. The telescope's new instruments also are more sensitive to light and can observe in ways that are significantly more efficient and require less observing time than previous generations of Hubble instruments. NASA astronauts installed the new instruments during the space shuttle servicing mission in May 2009. Besides adding the instruments, the astronauts also completed a dizzying list of other chores that included performing unprecedented repairs on two other science instruments.

Now that Hubble has reopened for business, it will tackle a whole range of observations. Looking closer to Earth, such observations will include taking a census of the population of Kuiper Belt objects residing at the fringe of our solar system, witnessing the birth of planets around other stars, and probing the composition and structure of the atmospheres of other worlds. Peering much farther away, astronomers have ambitious plans to use Hubble to make the deepest-ever portrait of the universe in near-infrared light. The resulting picture may reveal never-before-seen infant galaxies that existed when the universe was less than 500 million years old. Hubble also is now significantly more well-equipped to probe and further characterize the behavior of dark energy, a mysterious and little-understood repulsive force that is pushing the universe apart at an ever-faster rate.

(More at HubbleSite.com)
 
Hubble's Festive View of a Grand Star-Forming Region

low_STSCI-H-p0932a-k-1340x520.png


Just in time for the holidays: a Hubble Space Telescope picture postcard of hundreds of brilliant blue stars wreathed by warm, glowing clouds. The festive portrait is the most detailed view of the largest stellar nursery in our local galactic neighborhood. The massive, young stellar grouping, called R136, is only a few million years old and resides in the 30 Doradus Nebula, a turbulent star-birth region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. There is no known star-forming region in our galaxy as large or as prolific as 30 Doradus. Many of the diamond-like icy blue stars are among the most massive stars known. Several of them are over 100 times more massive than our Sun. These hefty stars are destined to pop off, like a string of firecrackers, as supernovas in a few million years.

The image, taken in ultraviolet, visible, and red light by Hubble's Wide Field Camera 3, spans about 100 light-years. The nebula is close enough to Earth that Hubble can resolve individual stars, giving astronomers important information about the birth and evolution of stars in the universe. The Hubble observations were taken Oct. 20-27, 2009. The blue color is light from the hottest, most massive stars; the green from the glow of oxygen; and the red from fluorescing hydrogen.

(More at HubbleSite.com)
 
Back
Top