Space Hubble Telescope News

Hubble Stretches Stellar Tape Measure 10 Times Farther into Space

low_keystone.png


Astronomers continue refining the precision of distance measurement techniques to better understand the dimensions of the universe. Calculating the age of the universe, its expansion rate, and the nature of dark energy all depend on the precise distance measurements to stars and galaxies. If the astronomical yardsticks are off, the astronomical interpretation may be flawed. The most reliable method for making astronomical distance measurements is to use straightforward geometry where the 186-million-mile diameter of Earth's orbit is used to construct a baseline of a triangle, much as a land surveyor would use. If a target star is close enough, it will appear to zigzag on the sky during the year as a reflection of Earth's orbit about the Sun. This technique is called parallax. The stars are so far away that the angle of this parallax shift is incredibly tiny. An innovative new observing technique has extended Hubble's yardstick 10 times farther into our galaxy, out to a distance of 7,500 light-years from Earth.

(More at HubbleSite.com)
 
Hubble Finds That Dwarf Galaxies Formed More Than Their Fair Share of the Universe's Stars

low_keystone.png


They may be little, but they pack a big star-forming punch. Hubble astronomers have found that dwarf galaxies in the young universe were responsible for an "early wave" of star formation not long after the big bang. The galaxies churned out stars at a furiously fast rate, far above the "normal" star formation expected of galaxies. Understanding the link between a galaxy's mass and its star-forming activity helps to assemble a consistent picture of events in the early universe.

The international team associated with this study consists of H. Atek (EPFL, Switzerland and Spitzer Science Center, California), J.-P. Kneib (EPFL, Switzerland and CNRS, France), C. Pacifici (Yonsei University Observatory, Republic of Korea), M. Malkan (University of California, Los Angeles), S. Charlot (Institut d'Astrophysique de Paris), J. Lee (STScI), A. Bedregal (Minnesota Institute for Astrophysics), A. Bunker (University of Oxford, UK), J. Colbert (Spitzer Science Center), A. Dressler (Observatories of the Carnegie Institution for Science), N. Hathi (Aix Marseille University, France), M. Lehnert (Institut d'Astrophysique de Paris, France), C. Martin (University of California, Santa Barbara), P. McCarthy (Observatories of the Carnegie Institution for Science), M. Rafelski (Spitzer Science Center), N. Ross (University of California, Los Angeles), B. Siana (University of California, Riverside), and H. Teplitz (Caltech).

(More at HubbleSite.com)
 
Swiftly Moving Gas Streamer Eclipses Supermassive Black Hole

low_keystone.png


Active galaxies host supermassive black holes in their cores. The intense gravity of the black hole creates a turbulent cauldron of extreme physics. These galaxies, such as NGC 5548 in this study, are too far away for the plasma fireworks to be directly imaged. Therefore astronomers use X-ray and ultraviolet spectroscopy to infer what is happening near the black hole. The new twist is the detection of a clumpy stream of gas that has swept in front of the black hole, blocking its radiation. This deep look into a black hole's environment yields clues to the behavior of active galaxies.

The science team consists of J. Kaastra (SRON Utrecht/Universiteit Utrecht/Leiden University, the Netherlands), G. Kriss (STScI/JHU, Baltimore, Maryland, USA), M. Cappi (INAF-IASF Bologna, Italy), M. Mehdipour (SRON Utrecht, the Netherlands/University College of London, Holmbury St. Mary, UK), P.-O. Petrucci (University Grenoble Alpes, CNRS, France), K. Steenbrugge (Universidad Católica del Norte, Antofagasta, Chile/University of Oxford, UK), N. Arav (Virginia Tech, Blacksburg, Virginia, USA), E. Behar (Technion-Israel Institute of Technology, Haifa, Israel), S. Bianchi (Università degli Studi Roma Tre, Italy), R. Boissay (University of Geneva, Switzerland), G. Branduardi-Raymont (MSSL/University College of London, Holmbury St. Mary, UK), C. Chamberlain (Virginia Tech, Blacksburg, Virginia, USA), E. Costantini (SRON Utrecht, the Netherlands), J. Ely (STScI, Baltimore, Maryland, USA), J. Ebrero (SRON Utrecht, the Netherlands/ESAC, Spain), L. Di Gesu (SRON Utrecht, the Netherlands), F. Harrison (California Institute of Technology, Pasadena, California, USA), S. Kaspi (Technion-Israel Institute of Technology, Haifa, Israel), J. Malzac (Université de Toulouse/CNRAS, France), B. De Marco (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), G. Matt (Università degli Studi Roma Tre, Italy), P. Nandra (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), S. Paltani (University of Geneva, Switzerland), R. Person (St. Jorioz, France), B. Peterson (Ohio State University, Columbus, USA), C. Pinto (University of Cambridge, UK), G. Ponti (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), F. Pozo Nuñez (Ruhr-Universität Bochum, Germany), A. De Rosa (INAF/IAPS, Roma, Italy), H. Seta (Rikkyo University, Tokyo, Japan), F. Ursini (University of Grenoble, CNRS, France), C. de Vries (SRON Utrecht, the Netherlands), D. Walton (California Institute of Technology, Pasadena, California, USA), and M. Whewell (MSSL/University College of London, Holmbury St. Mary, UK).

(More at HubbleSite.com)
 
Hubble to Proceed with Full Search for New Horizons Targets

low_keystone.png


Planetary scientists have successfully used the Hubble Space Telescope to boldly look out to the far frontier of the solar system to find suitable targets for NASA's New Horizons mission to Pluto. After the marathon probe zooms past Pluto in July 2015, it will travel across the Kuiper Belt - a vast rim of primitive ice bodies left over from the birth of our solar system 4.6 billion years ago. If NASA approves, the probe could be redirected to fly to a Kuiper Belt object (KBO) and photograph it up close.

As a first step, Hubble found two KBOs drifting against the starry background. They may or may not be the ideal target for New Horizons. Nevertheless, the observation is proof of concept that Hubble can go forward with an approved deeper KBO search, covering an area of sky roughly the angular size of the full Moon. The exceedingly challenging observation amounted to finding something no bigger than Manhattan Island, and charcoal black, located 4 billion miles away.

(More at HubbleSite.com)
 
NASA Telescopes Find Clear Skies and Water Vapor on Exo-Neptune

low_keystone.png


The weather forecast for a planet 120 light-years from Earth is clear skies and steamy water vapor. Finding clear skies on a gaseous world the size of Neptune is a good sign that even smaller, Earth-size planets might have similarly good visibility. This would allow earthbound astronomers to measure the underlying atmospheric composition of an exoplanet. Astronomers using the Hubble, Spitzer, and Kepler space telescopes were able to determine that the planet, cataloged HAT-P-11b, has water vapor in its atmosphere. The world is definitely steamy with temperatures over 1,000 degrees Fahrenheit. The planet is so hot because it orbits so close to its star, completing one orbit every five days.

(More at HubbleSite.com)
 
Hubble Maps the Temperature and Water Vapor on an Extreme Exoplanet

low_keystone.png


Located 260 light-years away, exoplanet WASP-43b is no place to call home. It is a world of extremes, where seething winds howl at the speed of sound from a 3,000-degree-Fahrenheit day side, hot enough to melt steel, to a pitch-black night side with plunging temperatures below 1,000 degrees Fahrenheit. The Hubble Space Telescope has been used to make the most detailed global map yet of the thermal glow from this turbulent world. The astronomers were also able to map temperatures at different layers of the world's atmosphere and traced the amount and distribution of water vapor. The Jupiter-sized planet lies so close to its orange dwarf host star that it completes an orbit in just 19 hours. The planet is also gravitationally locked so that it keeps one hemisphere facing the star.

(More at HubbleSite.com)
 
Here's Looking At You: Spooky Shadow Play Gives Jupiter a Giant Eye

low_keystone.png


The Hubble Space Telescope treats astronomers to gorgeous close-up views of the eerie outer planets. But it's a bit of a trick when it seems like the planet's looking back at you! In this view, the shadow of the Jovian moon Ganymede swept across the center of the Great Red Spot – a giant storm on the planet. This gave Jupiter the uncanny appearance of having a pupil in the center of a 10,000-mile-diameter "eye." Now if it blinks, we may really have to worry!

(More at HubbleSite.com)
 
Hubble Discovers that Milky Way Core Drives Wind at 2 Million Miles Per Hour

low_keystone.png


At a time when our earliest human ancestors had recently mastered walking upright, the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour. Now, at least 2 million years later, astronomers are witnessing the aftermath of the explosion: billowing clouds of gas towering about 30,000 light-years above and below the plane of our galaxy.

The enormous structure, dubbed the Fermi Bubbles, was discovered five years ago as a gamma-ray glow on the sky in the direction of the galactic center. The balloon-like features have since been observed in X-rays and radio waves. But astronomers needed NASA's Hubble Space Telescope to measure for the first time the velocity and composition of the mystery lobes. They now seek to calculate the mass of the material being blown out of our galaxy, which could lead them to determine the outburst's cause from several competing scenarios. The graphic shows how Hubble probed the light from a distant quasar to analyze the outflow. The quasar's light passed through one of the bubbles. Imprinted on that light is information about the outflow's speed, composition, and eventually mass.

(More at HubbleSite.com)
 
Hubble Spies a Loopy Galaxy

low_keystone.png


At first glance, galaxy NGC 7714 resembles a partial golden ring from an amusement park ride. This unusual structure is a river of Sun-like stars that has been pulled deep into space by the gravitational tug of a bypassing galaxy (not seen in this Hubble Space Telescope photo). Though the universe is full of such colliding galaxies that are distorted in a gravitational taffy-pull, NGC 7714 is particularly striking for the seeming fluidity of the stars along a vast arc. The near-collision between the galaxies happened at least 100 million years ago.

(More at HubbleSite.com)
 
Hubble Finds Giant Halo Around the Andromeda Galaxy

low_keystone.png


The Andromeda galaxy is our Milky Way's nearest neighbor in space. The majestic spiral of over 100 billion stars is comparable in size to our home galaxy. At a distance of 2.5 million light-years, it is so close to us the galaxy can be seen as a cigar-shaped smudge of light high in the autumn sky. But if you could see the huge bubble of hot, diffuse plasma surrounding it, it would appear 100 times the angular diameter of the full Moon! The gargantuan halo is estimated to contain half the mass of the stars in the Andromeda galaxy itself. It can be thought of as the "atmosphere" of a galaxy. Astronomers using Hubble identified the gas in Andromeda's halo by measuring how it filtered the light of distant bright background objects called quasars. It is akin to seeing the glow of a flashlight shining through a fog. This finding promises to tell astronomers more about the evolution and structure of one of the most common types of galaxies in the universe.

(More at HubbleSite.com)
 
Lonely Galaxy 'Lost in Space'

low_keystone.png


This magnificent spiral galaxy is at the edge of what astronomers call the Local Void. The Local Void is a huge volume of space that is at least 150 million light-years across that doesn't seen to contain anything much. There are no obvious galaxies. This void is simply part of the structure of the universe where matter grows clumpy over time so that galaxies form clusters and chains, which are separated by regions mostly devoid of galaxies. This results in sort of a "soap bubble" structure on large scales. The galaxy, as photographed by NASA's Hubble Space Telescope, is especially colorful where bright red patches of gas can be seen scattered through its spiral arms. Bright blue regions contain newly forming stars. Dark brown dust lanes snake across the galaxy's bright arms and center, giving it a mottled appearance.

(More at HubbleSite.com)
 
Hubble Telescope Detects 'Sunscreen' Layer on Distant Planet

low_keystone.jpg


Researchers using NASA's Hubble Space Telescope have detected a stratosphere and temperature inversion in the atmosphere of a planet several times the mass of Jupiter, called WASP-33b. Earth's stratosphere sits above the troposphere, the turbulent, active-weather region that reaches from the ground to the altitude where nearly all clouds top out. In the troposphere, the temperature is warmer at the bottom – ground level – and cools down at higher altitudes. The stratosphere is just the opposite: There, the temperature rises at higher altitudes. This is called a temperature inversion, and it happens because ozone in the stratosphere absorbs some of the sun's radiation, preventing it from reaching the surface and warming this layer of the atmosphere. Similar temperature inversions occur in the stratospheres of other planets in our solar system, such as Jupiter and Saturn. But WASP-33b is so close to its star that its atmosphere is a scathing 10,000 degrees Fahrenheit, and its atmosphere is so hot the planet might actually have titanium oxide rain.

(More at HubbleSite.com)
 
Hubble Sees a 'Behemoth' Bleeding Atmosphere Around a Warm Neptune-Sized Exoplanet

low_keystone.png


Astronomers using NASA's Hubble Space Telescope have discovered an immense cloud of hydrogen dubbed "The Behemoth" bleeding off a planet orbiting a nearby star. The enormous, comet-like feature is about 50 times the size of the parent star. The hydrogen is evaporating from a warm, Neptune-sized planet, due to extreme radiation from the star. A phenomenon this large has never before been seen around any exoplanet. It may offer clues to how Super-Earths – massive, rocky, versions of Earth – are born around other stars through the evaporation of their outer layers of hydrogen. Finding "The Behemoth" could be a game-changer for characterizing atmospheres of the whole population of Neptune-sized planets and Super-Earths in ultraviolet observations.

(More at HubbleSite.com)
 
NASA Telescopes Find Galaxy Cluster with Vibrant Heart

low_keystone.png


Astronomers have discovered a rare beast of a galaxy cluster whose heart is bursting with new stars. The unexpected find, made with the help of NASA's Spitzer and Hubble space telescopes, suggests that behemoth galaxies at the cores of these massive clusters can grow significantly by feeding on gas stolen from other galaxies. The cluster in the new study, referred to by astronomers as SpARCS1049+56, has at least 27 galaxy members, and a combined mass equal to nearly 400 trillion suns. It is located 9.8 billion light-years away in the Ursa Major constellation. The object was initially discovered using Spitzer and the Canada-France-Hawaii Telescope, and confirmed using the W. M. Keck Observatory. Hubble helped confirm the source of the fuel for the new stars.

(More at HubbleSite.com)
 
Hubble's Planetary Portrait Captures New Changes in Jupiter's Great Red Spot

low_keystone.png


Scientists using NASA's Hubble Space Telescope have produced new global maps of Jupiter – the first in a series of annual portraits of the solar system's outer planets from the Outer Planet Atmospheres Legacy program (OPAL). The two Jupiter maps, representing nearly back-to-back rotations of the planet on Jan. 19, 2015, show the movements of the clouds and make it possible to determine the speeds of Jupiter's winds. The Hubble observations confirm that the Great Red Spot continues to shrink and become more circular. In addition, an unusual wispy filament is seen, spanning almost the entire width of the vortex. These findings are described in a new paper published online in the October 10 issue of The Astrophysical Journal.

The collection of maps to be obtained over time from the OPAL program will not only help scientists understand the atmospheres of our giant planets, but also the atmospheres of planets being discovered around other stars.

(More at HubbleSite.com)
 
NASA's Great Observatories Weigh Massive Young Galaxy Cluster

low_keystone.png


Astronomers have made the most detailed study yet of an extremely massive young galaxy cluster using three of NASA's Great Observatories. This multiwavelength image shows this galaxy cluster, called IDCS J1426.5+3508 (IDCS 1426 for short), in X-rays recorded by the Chandra X-ray Observatory in blue, visible light observed by the Hubble Space Telescope in green, and infrared light from the Spitzer Space Telescope in red.

This rare galaxy cluster, which is located 10 billion light-years from Earth, is almost as massive as 500 trillion suns. This object has important implications for understanding how these megastructures formed and evolved early in the universe. Astronomers have observed IDCS 1426 when the universe was less than a third of its current age. It is the most massive galaxy cluster detected at such an early age.

(More at HubbleSite.com)
 
Monstrous Cloud Boomerangs Back to Our Galaxy

low_keystone.png


The old adage "what goes up must come down" even applies to an immense cloud of hydrogen gas outside our Milky Way galaxy. First discovered in the 1960s, the comet-shaped cloud is 11,000 light-years long and 2,500 light-years across. If the cloud could be seen in visible light, it would span the sky with an apparent diameter 30 times greater than the size of the full moon. The cloud, which is invisible at optical wavelengths, is plummeting toward our galaxy at nearly 700,000 miles per hour. Hubble was used to measure the chemical composition of the cloud as a means of assessing where it came from. Hubble astronomers were surprised to find that the cloud, which is largely composed of hydrogen, also has heavier elements that could only come from stars. This means the cloud came from the star-rich disk of our galaxy. The Smith Cloud is following a ballistic trajectory and will plow back into the Milky Way's disk in about 30 million years. When it does, astronomers believe it will ignite a spectacular burst of star formation, perhaps providing enough gas to make 2 million suns.

(More at HubbleSite.com)
 
Hubble Discovers Moon Orbiting the Dwarf Planet Makemake

low_keystone.png


Makemake is one of several dwarf planets that reside in the frigid outer realm of our solar system called the Kuiper Belt, a "junkyard" of countless icy bodies left over from our solar system's formation.

After discovering Makemake in 2005, astronomers had searched several times for a companion orbiting the icy world. Now, the Hubble Space Telescope has uncovered a tiny moon around Makemake that is estimated to be 100 miles wide. Nicknamed MK 2, the moon is more than 1,300 times fainter than Makemake, which is 870 miles across. MK 2 is 13,000 miles away from the dwarf planet.

(More at HubbleSite.com)
 
Hubble Takes Mars Portrait Near Close Approach

low_keystone.png


On May 12, 2016, astronomers using NASA's Hubble Space Telescope captured this striking image of Mars, when the planet was 50 million miles from Earth. The photo reveals details as small as 20 miles to 30 miles across. This observation was made just a few days before Mars opposition on May 22, when the sun and Mars will be on exact opposite sides of Earth. Mars also will be 47.4 million miles from Earth. On May 30, Mars will be the closest it has been to Earth in 11 years, at a distance of 46.8 million miles. Mars is especially photogenic during opposition because it can be seen fully illuminated by the sun as viewed from Earth.

(More at HubbleSite.com)
 
NASA Telescopes Find Clues for How Giant Black Holes Formed So Quickly

low_keystone.png


Using data from three of NASA's Great Observatories (the Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope), scientists have found the best evidence to date that supermassive black holes in the early universe were produced by the direct collapse of a gas cloud. If confirmed, this result could lead to new insight into how black holes were formed and grew billions of years ago. This artist's illustration depicts a possible "seed" for the formation of a supermassive black hole. The inset boxes contain Chandra (top) and Hubble (bottom) images of one of two candidate seeds, where the properties in the data matched those predicted by sophisticated models produced by researchers of the direct-collapse mechanism.

For more information about this study, visit:
Chandra Press Room :: NASA Telescopes Find Clues For How Giant Black Holes Formed So Quickly :: 24 May 16

(More at HubbleSite.com)
 
Back
Top