Space Hubble Telescope News

Hubble Finds Substellar Objects in the Orion Nebula

low_STSCI-H-p1803a-k-1340x520.png


Using NASA's Hubble Space Telescope to peer deep into the vast stellar nursery called the Orion Nebula, astronomers searched for small, faint bodies. What they found was the largest population yet of brown dwarfs — objects that are more massive than planets but do not shine like stars. Researchers identified 17 brown dwarf companions to red dwarf stars, one brown dwarf pair, and one brown dwarf with a planetary companion. They also found three giant planets, including a binary system where two planets orbit each other in the absence of a parent star. This survey could only be done with Hubble’s exceptional resolution and infrared sensitivity.

(More at HubbleSite.com)
 
Hubble Finds Huge System of Dusty Material Enveloping the Young Star HR 4796A

low_STSCI-H-p1811a-k-1340x520.png


Finding lots of dust around stars may not sound like anything astronomers would get excited about. The universe is a dusty place. But dust around a young star can be evidence that planet formation is taking place. This isn’t a new idea. In 1755, German Philosopher Immanuel Kant first proposed that planets formed around our Sun in a debris disk of gas and dust. Astronomers imagined that this process might take place around other stars.

They had to wait until the early 1980s for the first observational evidence for a debris disk around any star to be uncovered. An edge-on debris disk was photographed around the southern star Beta Pictoris. Beta Pictoris remained the poster child for such debris systems until the late 1990s when the Hubble Space Telescope’s second-generation instruments, which had the capability of blocking out the glare of a central star, allowed many more disks to be photographed. Now, they are thought to be common around stars. About 40 such systems have been imaged to date, largely by Hubble.

In this recent image, Hubble uncovers a vast, complex dust structure, about 150 billion miles across, enveloping the young star HR 4796A. A bright, narrow inner ring of dust is already known to encircle the star, based on much earlier Hubble photographs. It may have been corralled by the gravitational pull of an unseen giant planet. This newly discovered huge dust structure around the system may have implications for what this yet-unseen planetary system looks like around the 8-million-year-old star, which is in its formative years of planet construction.

(More at HubbleSite.com)
 
Saturn and Mars Team Up to Make Their Closest Approaches to Earth in 2018

low_STSCI-H-p1829a-k-1340x520.png


As Saturn and Mars ventured close to Earth, Hubble captured their portraits in June and July 2018, respectively. The telescope photographed the planets near opposition, when the Sun, Earth and an outer planet are lined up, with Earth sitting in between the Sun and the outer planet. Around the time of opposition, a planet is at its closest distance to Earth in its orbit. Hubble viewed Saturn on June 6, when the ringed world was approximately 1.36 billion miles from Earth, as it approached a June 27 opposition. Mars was captured on July 18, at just 36.9 million miles from Earth, near its July 27 opposition. Hubble saw the planets during summertime in Saturn’s northern hemisphere and springtime in Mars’ southern hemisphere. The increase in sunlight in Saturn’s northern hemisphere heated the atmosphere and triggered a large storm that is now disintegrating in Saturn’s northern polar region. On Mars, a spring dust storm erupted in the southern hemisphere and ballooned into a global event enshrouding the entire planet.

(More at HubbleSite.com)
 
Galaxy Drift Challenges Ideas About Universe's Evolution

low_STSCI-H-p-9415a-k1340x520.png


Two astronomers have discovered that our own Milky Way galaxy and most of its neighboring galaxies, contained within a huge volume of the universe, one billion light-years in diameter, are drifting with respect to the more distant universe. This startling result may imply that the universe is "lumpier" on a much larger scale than can be readily explained by any current theory. "The new observations thus strongly challenge our understanding of how the universe evolved," says Dr. Tod Lauer of the National Optical Astronomy Observatories (NOAO).

(More at HubbleSite.com)
 
Hubble Provide Complete View of Jupiter's Auroras

low_STSCI-H-p-9804-k1340x520.png


The Hubble telescope has captured a complete view of Jupiter's northern and southern auroras. Images taken in ultraviolet light show both auroras, the oval-shaped objects in the inset photos.

The "curtains" of auroral light extend several hundred miles above the edge of Jupiter. Images of Earth's auroral curtains, taken from the space shuttle, have a similar appearance. Jupiter's auroras are viewed against a backdrop of the entire planet. The auroras are brilliant curtains of light in Jupiter's upper atmosphere. Jovian auroral storms, like Earth's, develop when electrically charged particles trapped in the magnetic field surrounding the planet spiral inward at high energies toward the north and south magnetic poles. When these particles hit the upper atmosphere, they excite atoms and molecules there, causing them to glow (the same process acting in street lights).

(More at HubbleSite.com)
 
Colossal Cyclone Swirls near Martian North Pole

low_STSCI-H-p-9922a-k1340x520.png


Astronomers using the Hubble telescope have discovered an enormous cyclonic storm system raging in the northern polar regions of the planet Mars. Nearly four times the size of the state of Texas, the storm is composed of water ice clouds like storm systems on Earth, rather than dust typically found in Martian storms.

The system is similar to so-called "spiral" storms observed more than 20 years ago by NASA's Viking Orbiter spacecraft, but it is nearly three times as gigantic as the largest previously detected Martian spiral storm system. The storm is nearly 1,100 miles across in the east-west direction and 900 miles in the north-south direction. The eye of the storm is nearly 200 miles in diameter. Each of these pictures illustrates the breadth of this immense storm.

(More at HubbleSite.com)
 
Scientists Track "Perfect Storm" on Mars

low_STSCI-H-p-0131a-k-1340x520.png


A pair of eagle-eyed NASA spacecraft – the Mars Global Surveyor (MGS) and Hubble Space Telescope – are giving amazed astronomers a ringside seat to the biggest global dust storm seen on Mars in several decades. The Martian dust storm, larger by far than any seen on Earth, has raised a cloud of dust that has engulfed the entire planet for several months.

(More at HubbleSite.com)
 
Hubble Astronomer Creates Spectacular Galaxy Collision Visualization for the National Air and Space Museum

low_STSCI-H-p0209a-k-1340x520.png


Someday our Milky Way Galaxy and the neighboring Andromeda Galaxy may come crashing together in a horrendous collision that will twist and distort their shapes beyond recognition. Of course, to see that, you'll have to wait several billion years. But thanks to a combination of research science, Hollywood computer graphics, and large-scale visualization, visitors to the Smithsonian Institution's National Air and Space Museum in Washington, DC, can witness such an event today. The Space Telescope Science Institute, the scientific home of NASA's Hubble Space Telescope, is extending its tradition of stunning imagery by creating a spectacular scientific visualization of two galaxies colliding. This incredibly detailed, full-dome video sequence will be a highlight of "Infinity Express: A 20-Minute Tour of the Universe," the inaugural show in the National Air and Space Museum's newly renovated Einstein Planetarium, opening Saturday, April 13.

(More at HubbleSite.com)
 
Space Movie Reveals Shocking Secrets of the Crab Pulsar

low_STSCI-H-p0224a-k-1340x520.png


Just when it seemed like the summer movie season had ended, two of NASA's Great Observatories have produced their own action movie. Multiple observations made over several months with NASA's Chandra X-ray Observatory and the Hubble Space Telescope captured the spectacle of matter and antimatter propelled to near the speed of light by the Crab pulsar, a rapidly rotating neutron star the size of Manhattan.

(More at HubbleSite.com)
 
Supernova Shock Wave Is Producing a Spectacular New Light Show

low_STSCI-H-p0409a-k-1340x520.png


Seventeen years ago, astronomers spotted the brightest stellar explosion ever seen since the one observed by Johannes Kepler 400 years ago. Called SN 1987A, the titanic supernova explosion blazed with the power of 100,000,000 suns for several months following its discovery on Feb. 23, 1987. Although the supernova itself is a million times fainter than 17 years ago, a new light show in the space surrounding it is just beginning.

This image, taken Nov. 28, 2003 by the Advanced Camera for Surveys aboard NASA's Hubble Space Telescope, shows many bright spots along a ring of gas, like pearls on a necklace. These cosmic "pearls" are being produced as a supersonic shock wave unleashed during the explosion slams into the ring at more than a million miles per hour. The collision is heating the gas ring, causing its innermost regions to glow. Curiously, one of the bright spots on the ring [at 4 o'clock] is a star that happens to lie along the telescope's line of sight.

(More at HubbleSite.com)
 
NASA's Great Observatories May Unravel 400-Year Old Supernova Mystery

low_STSCI-H-p0429a-k-1340x520.png


Four hundred years ago, sky watchers, including the famous astronomer Johannes Kepler, were startled by the sudden appearance of a "new star" in the western sky, rivaling the brilliance of the nearby planets. Now, astronomers using NASA's three Great Observatories are unraveling the mysteries of the expanding remains of Kepler's supernova, the last such object seen to explode in our Milky Way galaxy.

(More at HubbleSite.com)
 
Stellar Survivor from 1572 A.D. Explosion Supports Supernova Theory

low_STSCI-H-p0434a-k-1340x520.png


An international team of astronomers is announcing today that they have identified the probable surviving companion star to a titanic supernova explosion witnessed in the year 1572 by the great Danish astronomer Tycho Brahe and other astronomers of that era.

This discovery provides the first direct evidence supporting the long-held belief that Type Ia supernovae come from binary star systems containing a normal star and a burned-out white dwarf star. The normal star spills material onto the dwarf, which eventually triggers an explosion.

(More at HubbleSite.com)
 
Hubble Tracks Asteroid's Sky Trek

low_STSCI-H-p0431a-k-1340x520.png


While analyzing NASA Hubble Space Telescope images of the Sagittarius dwarf irregular galaxy (SagDIG), an international team of astronomers led by Simone Marchi, Yazan Momany, and Luigi Bedin discovered 13 sucessive faint trails left by a tiny asteroid. The trails are seen as a series of reddish arcs on the right in this August 2003 Advanced Camera for Surveys image.

(More at HubbleSite.com)
 
American Astronomical Society Sets Goals for Improving Gender Equity in Astronomy

low_STScI-H-p0507a-k-1340x520.png


The American Astronomical Society (AAS) has endorsed a new set of recommendations to improve the status of gender equity in astronomy. The recommendations, endorsed at the 205th meeting of the Society in San Diego from January 8 to 13, 2005, were prepared by the Society's Committee on the Status of Women in Astronomy (CSWA).

(More at HubbleSite.com)
 
Hubble Celebrates 15th Anniversary with Spectacular New Images

low_STScI-H-p0512a-k-1340x520.png


During the 15 years NASA's Hubble Space Telescope has orbited the Earth, it has taken more than 700,000 photos of the cosmos; images that have awed, astounded and even confounded astronomers and the public.

NASA released new views today of two of the most well-known objects Hubble has ever observed: the Whirlpool Galaxy (spiral galaxy M51)
and the Eagle Nebula
. These new images are among the largest and sharpest Hubble has ever taken. They were made with Hubble's newest camera, the Advanced Camera for Surveys (ACS). The images are so incredibly sharp, they could be enlarged to billboard size and still retain stunning details.

For the 15th anniversary, scientists used the ACS to record a new region of the eerie-looking Eagle Nebula. The Eagle Nebula image reveals a tall, dense tower of gas being sculpted by ultraviolet light from a group of massive, hot stars. The new Whirlpool Galaxy image showcases the spiral galaxy's classic features, from its curving arms, where newborn stars reside, to its yellowish central core that serves as home for older stars. A feature of considerable interest is the companion galaxy located at the end of one of the spiral arms.

(More at HubbleSite.com)
 
Supernova Remnant Menagerie

low_STScI-H-p0515a-k-1340x520.png


A violent and chaotic-looking mass of gas and dust is seen in this Hubble Space Telescope image of a nearby supernova remnant. Denoted N 63A, the object is the remains of a massive star that exploded, spewing its gaseous layers out into an already turbulent region.

(More at HubbleSite.com)
 
Hubble Catches Scattered Light from the Boomerang Nebula

low_STScI-H-p0525a-k-1340x520.png


NASA's Hubble Space Telescope caught the Boomerang Nebula in images taken with the Advanced Camera for Surveys in early 2005. This reflecting cloud of dust and gas has two nearly symmetric lobes of matter that are being ejected from a central star. Each lobe of the nebula is nearly one light-year in length, making the total length of the nebula half as long as the distance from our Sun to our nearest neighbors- the Alpha Centauri stellar system, located roughly 4 light-years away. The Boomerang Nebula resides 5,000 light-years from Earth. Hubble's sharp view is able to resolve patterns and ripples in the nebula very close to the central star that are not visible from the ground.

(More at HubbleSite.com)
 
NASA Space Observatories Glimpse Faint Afterglow of Nearby Stellar Explosion

low_STScI-H-p0530a-k-1340x520.png


Intricate wisps of glowing gas float amid a myriad of stars in this image of the supernova remnant, N132D. The ejected material shows that roughly 3,000 years have passed since the supernova blast. As this titanic explosion took place in the Large Magellanic Cloud, a nearby neighbor galaxy some 160,000 light-years away, the light from the supernova remnant is dated as being 163,000 years old from clocks on Earth. This composite image of N132D comprises visible-light data taken in January 2004 with Hubble's Advanced Camera for Surveys, and X-ray images obtained in July 2000 by Chandra's Advanced CCD Imaging Spectrometer. The complex structure of N132D is due to the expanding supersonic shock wave from the explosion impacting the interstellar gas of the LMC. A supernova remnant like N132D provides information on stellar evolution and the creation of chemical elements such as oxygen through nuclear reactions in their cores.

(More at HubbleSite.com)
 
Mars Kicks Up the Dust as it Makes Closest Approach to Earth

low_STScI-H-p0534a-k-1340x520.png


NASA's Hubble Space Telescope snapped this picture of Mars on October 28, within a day of its closest approach to Earth on the night of October 29. The large regional dust storm appears as the brighter, redder cloudy region in the middle of the planet's disk. This storm, which measures 930 miles (1500 km) has been churning in the planet's equatorial regions for several weeks now, and it is likely responsible for the reddish, dusty haze and other dust clouds seen across this hemisphere of the planet. Hubble's Advanced Camera for Surveys High Resolution Imager took this image when the red planet was 43 million miles (69 million km) from Earth. Mars won't be this close again to Earth until 2018. Mars is now in its warmest months, closest to the Sun in its orbit, resulting in a smaller than normal south polar ice cap which has largely sublimated with the approaching summer.

(More at HubbleSite.com)
 
Nearby Dust Clouds in the Milky Way

low_STSCI-H-p-0613a-k-1340x520.png


NASA's Hubble Space Telescope has photographed dense knots of dust and gas in our Milky Way Galaxy. This cosmic dust is a concentration of elements that are responsible for the formation of stars in our galaxy and throughout the universe. These dark, opaque knots of gas and dust are called "Bok globules," and they are absorbing light in the center of the nearby emission nebula and star-forming region, NGC 281. These images were taken with Hubble's Advanced Camera for Surveys in October 2005. NGC 281 is located nearly 9,500 light-years away in the direction of the constellation Cassiopeia.

(More at HubbleSite.com)
 
Back
Top