Space Hubble Telescope News

NASA's Great Observatories Celebrate the International Year of Astronomy with a National Unveiling of Spectacular Images

low_STSCI-H-p0907a-k-1340x520.png


In 1609, Galileo first turned his telescope to the heavens and gave birth to modern astronomy. To commemorate four hundred years of exploring the universe, 2009 is designated the International Year of Astronomy. NASA's Great Observatories - the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory - are marking the occasion with the release of a suite of images at over 100 planetariums, museums, nature centers, and schools across the country in conjunction with Galileo's birthday on February 15. The selected sites will unveil a large, 9-square-foot print of the spiral galaxy Messier 101 that combines the optical view of Hubble, the infrared view of Spitzer, and the X-ray view of Chandra into one multiwavelength picture.

The International Year of Astronomy Great Observatories Image Unveiling is supported by the NASA Science Mission Directorate Astrophysics Division. The project is a collaboration between the Space Telescope Science Institute, the Spitzer Science Center, and the Chandra X-ray Center.

(More at HubbleSite.com)
 
Trio of Galaxies Mix It Up

low_STSCI-H-p0910a-k-1340x520.png


Though they are the largest and most widely scattered objects in the universe, galaxies do go bump in the night. The Hubble Space Telescope has photographed many pairs of galaxies colliding. Like snowflakes, no two examples look exactly alike. This is one of the most arresting galaxy smash-up images to date.

At first glance, it looks as if a smaller galaxy has been caught in a tug-of-war between a Sumo-wrestler pair of elliptical galaxies. The hapless, mangled galaxy may have once looked more like our Milky Way, a pinwheel-shaped galaxy. But now that it's caught in a cosmic Cuisinart, its dust lanes are being stretched and warped by the tug of gravity. Unlike the elliptical galaxies, the spiral is rich in dust and gas for the formation of new stars. It is the fate of the spiral galaxy to be pulled like taffy and then swallowed by the pair of elliptical galaxies. This will trigger a firestorm of new stellar creation. If there are astronomers on any planets in this galaxy group, they will have a ringside seat to seeing a flurry of starbirth unfolding over many millions of years to come. Eventually the ellipticals should merge too, creating one single super-galaxy many times larger than our Milky Way. This trio is part of a tight cluster of 16 galaxies, many of them being dwarf galaxies. The galaxy cluster is called the Hickson Compact Group 90 and lies about 100 million light-years away in the direction of the constellation Piscis Austrinus, the Southern Fish.

(More at HubbleSite.com)
 
Hubble Uncovers an Unusual Stellar Progenitor to a Supernova

low_STSCI-H-p0913a-k-1340x520.png


Astronomers have detailed theories about what type of stars self-destruct in titanic supernova explosions. However, it would be useful to test stellar theory by actually seeing what a doomed star looked like before it blew apart. The problem is that a supernova blast pretty much eradicates all evidence of what the progenitor star was. Like a surveillance camera photographing the scene of a crime before it happened, the Hubble Space Telescope has a priceless archival photo of the galaxy that contains a picture of the supernova progenitor star as it appeared eight years before it exploded. The progenitor was comparatively easy to find because it was one of the brightest stars in the host galaxy. But the discovery has only further confounded supernova mysteries. The progenitor star belongs to a class of luminous blue variable stars that are not expected to explode at such an early stage of their existence.

(More at HubbleSite.com)
 
Galaxy Cluster MACS J0717

low_STSCI-H-p0917a-k-1340x520.png


The most crowded collision of galaxy clusters has been identified by combining information from three different telescopes. This result gives scientists a chance to learn what happens when some of the largest objects in the universe go at each other in a cosmic free-for-all. Using data from NASA's Chandra X-ray Observatory, Hubble Space Telescope, and the Keck Observatory in Hawaii, astronomers were able to determine the three-dimensional geometry and motion in the system MACS J0717.5+3745 (or MACS J0717, for short), located about 5.4 billion light-years from Earth.

(More at HubbleSite.com)
 
NASA's Great Observatories Celebrate International Year of Astronomy

low_STSCI-H-p0928a-k-1340x520.png


A never-before-seen view of the turbulent heart of our Milky Way galaxy is being unveiled by NASA on Nov. 10. This event will commemorate the 400 years since Galileo first turned his telescope to the heavens in 1609. In celebration of this International Year of Astronomy, NASA is releasing images of the galactic center region as seen by its Great Observatories to more than 150 planetariums, museums, nature centers, libraries, and schools across the country.

(More at HubbleSite.com)
 
Jurassic Space: Ancient Galaxies Come Together After Billions of Years

low_STSCI-H-p1008-k-1340x520.png


Imagine finding a living dinosaur in your backyard. Astronomers have found the astronomical equivalent of prehistoric life in our intergalactic backyard: a group of small, ancient galaxies that has waited 10 billion years to come together. These "late bloomers" are on their way to building a large elliptical galaxy. Such encounters between dwarf galaxies are normally seen billions of light-years away and therefore occurred billions of years ago. But these galaxies, members of Hickson Compact Group 31, are relatively nearby, only 166 million light-years away. New images of these galaxies by NASA's Hubble Space Telescope offer a window into what commonly happened in the universe's formative years when large galaxies were created from smaller building blocks. The Hubble observations have added important clues to the story of this interacting foursome, allowing astronomers to determine when the encounter began and to predict a future merger. Astronomers know the system has been around for a while, because the oldest stars in a few of its ancient globular clusters are about 10 billion years old. The encounter, though, has been going on for about a few hundred million years, the blink of an eye in cosmic history. Everywhere the astronomers looked in this compact group they found batches of infant star clusters and regions brimming with star birth. Hubble reveals that the brightest clusters, hefty groups each holding at least 100,000 stars, are less than 10 million years old. The entire system is rich in hydrogen gas, the stuff of which stars are made. Astronomers used Hubble's Advanced Camera for Surveys to resolve the youngest and brightest of those clusters, which allowed them to calculate the clusters' ages, trace the star-formation history, and determine that the galaxies are undergoing the final stages of galaxy assembly.

The composite image of Hickson Compact Group 31 shows the four galaxies mixing it up. The bright, distorted object at middle, left, is actually two colliding dwarf galaxies. The bluish star clusters have formed in the streamers of debris pulled from the galaxies and at the site of their head-on collision. The cigar-shaped object above the galaxy duo is another member of the group. A bridge of star clusters connects the trio. A longer rope of bright star clusters points to the fourth member of the group, at lower right. The bright object in the center is a foreground star. The image was composed from observations made by the Hubble Space Telescope's Advanced Camera for Surveys, NASA's Spitzer Space Telescope, and the Galaxy Evolution Explorer (GALEX).

(More at HubbleSite.com)
 
A Galactic Spectacle

low_STSCI-H-p1025-k-1340x520.png


A beautiful new image of two colliding galaxies has been released by NASA's Great Observatories. The Antennae galaxies, located about 62 million light-years from Earth, are shown in this composite image from the Chandra X-ray Observatory (blue), the Hubble Space Telescope (gold and brown), and the Spitzer Space Telescope (red). The imaging data were taken in 1999, 2003, 2004, and 2005. The Antennae galaxies take their name from the long antenna-like "arms," seen in wide-angle views of the system. These features were produced by tidal forces generated in the collision.

(More at HubbleSite.com)
 
Hubble Supernova Bubble Resembles Holiday Ornament

low_STSCI-H-p1027-k-1340x520.png


A delicate sphere of gas, photographed by NASA's Hubble Space Telescope, floats serenely in the depths of space. The pristine shell, or bubble, is the result of gas that is being shocked by the expanding blast wave from a supernova. Called SNR 0509-67.5 (or SNR 0509 for short), the bubble is the visible remnant of a powerful stellar explosion in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light-years from Earth. Ripples in the shell's surface may be caused by either subtle variations in the density of the ambient interstellar gas, or possibly driven from the interior by pieces of the ejecta. The bubble-shaped shroud of gas is 23 light-years across and is expanding at more than 11 million miles per hour (5,000 kilometers per second).

Hubble's Advanced Camera for Surveys observed the supernova remnant on Oct. 28, 2006, with a filter that isolates light from glowing hydrogen seen in the expanding shell. These observations were then combined with visible-light images of the surrounding star field that were imaged with Hubble's Wide Field Camera 3 on Nov. 4, 2010.

(More at HubbleSite.com)
 
NASA Telescopes Help Discover Surprisingly Young Galaxy

low_STSCI-H-p-1112a-k-1340x520.png


Astronomers have uncovered one of the youngest galaxies in the distant universe, with stars that formed 13.5 billion years ago, a mere 200 million years after the Big Bang. The finding addresses questions about when the first galaxies arose, and how the early universe evolved. NASA's Hubble Space Telescope was the first to spot the newfound galaxy. Detailed observations from the W.M. Keck Observatory on Mauna Kea in Hawaii revealed the observed light dates to when the universe was only 950 million years old; the universe formed about 13.7 billion years ago. Infrared data from both Hubble and NASA's Spitzer Space Telescope revealed the galaxy's stars are quite mature, having formed when the universe was just a toddler at 200 million years old. The galaxy's image is being magnified by the gravity of a massive cluster of galaxies (Abell 383) parked in front of it, making it appear 11 times brighter. This phenomenon is called gravitational lensing.

(More at HubbleSite.com)
 
Even Low-Mass Galaxies Can Harbor Supermassive Black Holes

low_STSCI-H-p-1127a-k-1340x520.png


Using the slitless grism on Hubble Space Telescope's Wide Field Camera 3 to probe the distant universe, astronomers have found supermassive black holes growing in surprisingly small galaxies. The findings suggest that central black holes formed at an earlier stage in galaxy evolution. This study is part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and will be published in the Astrophysical Journal.

(More at HubbleSite.com)
 
Space Telescopes Reveal Secrets of Turbulent Black Hole

low_STSCI-H-p-1128a-k-1340x520.png


An international team of astronomers using five different telescopes has uncovered striking features around a supermassive black hole in the core of the distant galaxy Markarian 509. They found a very hot corona hovering above the black hole and cold gas "bullets" in hotter diffuse gas, speeding outward with velocities over 1 million miles per hour. This corona absorbs and reprocesses the ultraviolet light from the accretion disk encircling the black hole, energizing it and converting it into X-rays. This discovery allows astronomers to make sense of some of the observations of active galaxies that have been hard to explain so far. The heart of the campaign consisted of repeated visible, X-ray, and gamma-ray observations with ESA's XMM-Newton and INTEGRAL satellites, which monitored Markarian 509 for six weeks. This was followed by long observations with NASA's Chandra X-ray Observatory and the Hubble Space Telescope. Prior to these observations short snapshots to monitor the behavior of the source at all wavelengths were taken with NASA's Swift satellite. The combined efforts of all these instruments gave astronomers an unprecedented insight into the core of an active galaxy.

The Cosmic Origins Spectrograph aboard Hubble reveals that the coolest gas in the line of sight toward Markarian 509 has 14 different velocity components at various locations in the innermost parts of this galaxy. Hubble's data, combined with X-ray observations, show that most of the visible outflowing gas is blown off from a dusty gas disk surrounding the central region more than 15 light-years away from the black hole. This outflow consists of dense, cold blobs or gas bullets embedded in hotter diffuse gas. The international consortium responsible for this campaign consists of 26 astronomers from 21 institutes on 4 continents. The first results of this campaign will be published as a series of seven papers in the journal Astronomy and Astrophysics. More results are in preparation.

(More at HubbleSite.com)
 
Astrophysicist Adam Riess Wins the 2011 Nobel Prize in Physics

low_STSCI-H-p-1133a-k-1340x520.png


Adam Riess, an astronomer at the Space Telescope Science Institute (STScI) and Krieger-Eisenhower Professor in Physics and Astronomy at The Johns Hopkins University in Baltimore, today was awarded the 2011 Nobel Prize in Physics by the Royal Swedish Academy of Sciences. The academy recognized him for leadership in the High-z Team's 1998 discovery that the expansion rate of the universe is accelerating, a phenomenon widely attributed to a mysterious, unexplained "dark energy" filling the universe.

(More at HubbleSite.com)
 
Distant Galaxy Bursts with Stars

low_STSCI-H-p-1142a-k-1340x520.png


One of the most distant galaxies known, called GN-108036, dates back to 750 million years after the Big Bang that created our universe. The galaxy's light took 12.9 billion years to reach us. GN-108036 was discovered and confirmed using the Subaru telescope and the W.M. Keck Observatory. After the galaxy was discovered, astronomers looked at infrared observations of it taken by NASA's Spitzer and Hubble space telescopes.

(More at HubbleSite.com)
 
Hubble Solves Mystery on Source of Supernova in Nearby Galaxy

low_STSCI-H-p1206a-k-1340x520.png


Using NASA's Hubble Space Telescope, astronomers have solved a longstanding mystery on the type of star, or so-called progenitor, that caused a supernova in a nearby galaxy. The finding yields new observational data for pinpointing one of several scenarios that could trigger such outbursts.

Based on previous observations from ground-based telescopes, astronomers knew that a kind of supernova called a Type Ia created a remnant named SNR 0509-67.5, which lies 170,000 light-years away in the Large Magellanic Cloud galaxy. The type of system that leads to this kind of supernova explosion has long been a high importance problem with various proposed solutions but no decisive answer. All these solutions involve a white dwarf star that somehow increases in mass to the highest limit. Astronomers failed to find any companion star near the center of the remnant, and this rules out all but one solution, so the only remaining possibility is that this one Type Ia supernova came from a pair of white dwarfs in close orbit.

(More at HubbleSite.com)
 
Dark Matter Core Defies Explanation in Hubble Image

low_STSCI-H-p1210a-k-1340x520.png


Astronomers observed what appeared to be a clump of dark matter left behind during a bizarre wreck between massive clusters of galaxies. The dark matter collected into a "dark core" containing far fewer galaxies than would be expected if the dark matter and galaxies hung together. Most of the galaxies apparently have sailed far away from the collision. This result could present a challenge to basic theories of dark matter, which predict that galaxies should be anchored to the invisible substance, even during the shock of a collision.

The initial observations, made in 2007, were so unusual that astronomers shrugged them off as unreal, due to poor data. However, new results obtained in 2008 from NASA's Hubble Space Telescope confirm that dark matter and galaxies parted ways in the gigantic merging galaxy cluster called Abell 520, located 2.4 billion light-years away. Now, astronomers are left with the challenge of trying to explain dark matter's seemingly oddball behavior in this cluster.

(More at HubbleSite.com)
 
NASA Telescopes Spy Ultra-Distant Galaxy Amidst Cosmic 'Dark Ages'

low_STSCI-H-p1231a-k-1340x520.png


With the combined power of NASA's Spitzer and Hubble space telescopes, as well as a cosmic magnification effect, astronomers have spotted what could be the most distant galaxy ever seen. Light from the young galaxy captured by the orbiting observatories first shone when our 13.7-billion-year-old universe was just 500 million years old. The far-off galaxy existed within an important era when the universe began to transit from the so-called cosmic dark ages. During this period, the universe went from a dark, starless expanse to a recognizable cosmos full of galaxies. The discovery of the faint, small galaxy opens a window onto the deepest, remotest epochs of cosmic history.

In the big image at left, the many galaxies of the massive cluster MACS J1149+2223 dominate the scene. Gravitational lensing by the giant cluster brightened the light from the newfound galaxy, known as MACS1149-JD, some 15 times. At upper right, a partial zoom-in shows MACS1149-JD in more detail, and a deeper zoom appears to the lower right.

(More at HubbleSite.com)
 
Hubble Goes to the eXtreme to Assemble Farthest Ever View of the Universe

low_STSCI-H-p1237a-k-1340x520.png


Like photographers assembling a portfolio of best shots, astronomers have assembled a new, improved portrait of mankind's deepest-ever view of the universe. Called the eXtreme Deep Field, or XDF, the photo was assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky at the center of the original Hubble Ultra Deep Field. The XDF is a small fraction of the angular diameter of the full Moon. The Hubble Ultra Deep Field is an image of a small area of space in the constellation Fornax, created using Hubble Space Telescope data from 2003 and 2004. By collecting faint light over many hours of observation, it revealed thousands of galaxies, both nearby and very distant, making it the deepest image of the universe ever taken at that time. The new full-color XDF image reaches much fainter galaxies and includes very deep exposures in red light from Hubble's new infrared camera, enabling new studies of the earliest galaxies in the universe. The XDF contains about 5,500 galaxies even within its smaller field of view. The faintest galaxies are one ten-billionth the brightness of what the human eye can see.

Astronomers continue studying this area of sky with Hubble. Extensive ongoing observing programs, led by Harry Teplitz and Richard Ellis at the California Institute of Technology, will allow astronomers to study the deep-field galaxies with Hubble to even greater depths in ultraviolet and infrared light prior to the launch of JWST. These new results will provide even more extraordinary views of this region of the sky and will be shared with the public in the coming months.

(More at HubbleSite.com)
 
Dr. Kathryn Flanagan Appointed Deputy Director of STScI

low_keystone.png


Dr. Kathryn Flanagan has been appointed the Deputy Director of the Space Telescope Science Institute (STScI) in Baltimore, Md. STScI is the science operations center for the Hubble Space Telescope and the James Webb Space Telescope (JWST), scheduled to launch in 2018. Dr. Flanagan had been the Institute's acting Deputy Director since January 2012. She came to STScI in 2007 to lead the JWST Mission Office, where she was responsible for the development and operations of the JWST Science and Operations Center at the Institute.

(More at HubbleSite.com)
 
Hubble Provides First Census of Galaxies Near Cosmic Dawn

low_keystone.png


Using NASA's Hubble Space Telescope, astronomers have uncovered a previously unseen population of seven primitive galaxies that formed more than 13 billion years ago, when the universe was less than 3 percent of its present age. The deepest images to date from Hubble yield the first statistically robust sample of galaxies that tells how abundant they were close to the era when galaxies first formed. The results show a smooth decline in the number of galaxies with increasing look-back time to about 450 million years after the big bang. The observations support the idea that galaxies assembled continuously over time and also may have provided enough radiation to reheat, or reionize, the universe a few hundred million years after the big bang. These pioneering observations blaze a trail for future exploration of this epoch by NASA's next-generation spacecraft, the James Webb Space Telescope. Looking deeper into the universe also means peering farther back in time. The universe is now 13.7 billion years old. The newly discovered galaxies are seen as they looked 350 million to 600 million years after the big bang. Their light is just arriving at Earth now.

The public is invited to participate in a "First Census of Galaxies Near Cosmic Dawn" webinar, in which key astronomers of the Hubble Ultra Deep Field 2012 team will discuss how they obtained their result and what it tells us about galaxy formation in the very early universe. Participants will be able to send in questions for the panel of experts to discuss. The webinar will be broadcast at 1:00 pm EST on Friday, December 14, 2012.

(More at HubbleSite.com)
 
NASA Space Telescopes See Weather Patterns in Brown Dwarf

low_keystone.png


Astronomers using NASA's Hubble and Spitzer space telescopes have probed the stormy atmosphere of a brown dwarf named 2MASSJ22282889-431026, creating the most detailed "weather map" yet for this class of cool, star-like orbs. The forecast shows wind-driven, planet-sized clouds enshrouding these strange worlds. Brown dwarfs form out of condensing gas, as stars do, but lack the mass to fuse atoms and produce energy. Instead, these objects, which some call failed stars, are more similar to gas planets with their complex, varied atmospheres. The new research is a stepping stone toward a better understanding not only brown dwarfs, but also of the atmospheres of planets beyond our solar system.

Hubble and Spitzer simultaneously watched the brown dwarf as its light varied in time, brightening and dimming about every 90 minutes as the body rotated. Astronomers found the timing of this change in brightness depended on whether they looked using different wavelengths of infrared light. The variations are the result of different layers or patches of material swirling around in the brown dwarf in windy storms as large as Earth itself. Spitzer and Hubble see different atmospheric layers because certain infrared wavelengths are blocked by vapors of water and methane high up, while other infrared wavelengths emerge from much deeper layers. Daniel Apai, the principal investigator of the research from the University of Arizona, Tucson, presented the results at the American Astronomical Society meeting on January 8 in Long Beach, Calif. A study describing the results, led by Esther Buenzli, also of the University of Arizona, is published in the Astrophysical Journal Letters.

(More at HubbleSite.com)
 
Back
Top