Space Hubble Telescope News

Robby

The News Robot
Joined
Jul 28, 2004
Location
Terra
Galaxy Blazes with New Stars Born from Close Encounter

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1295/low_STSCI-H-p1930a-k-1340x520.png

One doesn't need a Ph.D. in astrophysics to recognize there is something odd-looking about this otherwise beautiful galaxy, NCG 4485. Like the Batman character Two-Face, one side looks normal, but the other side looks contorted with a firestorm of star formation going on. Why the colorful asymmetry in an island star city many thousands of light-years across? The clue is off the edge of the photo. It's another galaxy, NGC 4490, that swept by NGC 4485 millions of years ago. The gravitational taffy pull between the two galaxies compressed interstellar gas to trigger a flurry of new star birth as seen in the abundance of young blue stars and pinkish nebulas. So, out of a near-collision between two galaxies comes stellar renewal and birth. It's a trademark of our compulsive universe where even things as big as galaxies can go bump in the night.

(More at HubbleSite.com)
 

Robby

The News Robot
Joined
Jul 28, 2004
Location
Terra
Hubble Explores the Formation and Evolution of Star Clusters in the Large Magellanic Cloud

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1308/low_STSCI-p1942a-k-1340x520.jpg

Like batches of cookies, stars are born together in groups. These star clusters, containing as many as 1 million members, evolve over time largely through a gravitational pinball where more massive stars are segregated from lower mass stars. Heavy stars tend to progressively sink toward the central region of the star cluster, while low-mass stars can escape from the system.

For the first time, the Hubble Space Telescope has been used to measure the effects of this dynamical aging on star clusters. They are all located 160,000 light-years from Earth in a satellite galaxy, the Large Magellanic Cloud (LMC). The diminutive galaxy is an ideal target because it hosts a selection of easily observed star clusters covering a wide range of ages.

Francesco Ferraro of the University of Bologna in Italy and his team used Hubble to observe five aging LMC star clusters — all born at about the same time but with different sizes — and succeeded in ranking them in terms of the level of dynamical evolution, which affects their shape.

(More at HubbleSite.com)
 

Robby

The News Robot
Joined
Jul 28, 2004
Location
Terra
Hubble Uses Earth as a Proxy for Identifying Oxygen on Potentially Habitable Planets Around Other Stars

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1356/low_STScI-H-p2030a-k-1340x520.png

Astronauts who have gazed at Earth from space have been awestruck at our blue marble planet's majesty and diversity. Mike Massimino, who helped service the Hubble Space Telescope in orbit, said, "I think of our planet as a paradise. We are very lucky to be here."

What's mind-blowing is that astronomers estimate there could be as many as 1 billion other planets like Earth in our Milky Way galaxy alone. Just imagine, one billion – not million – other "paradise planets." But it's paradise lost if nothing is living there to marvel at sunsets in azure blue skies. And, as 19th century philosopher Thomas Carlyle mused, "…what a waste of space."

It is sobering that our home planet is the only known place in the universe where life as we know it exists and thrives. And so, we gaze outward to the stars, imprisoned by space and time, into a cosmic loneliness. That's why scientists are dedicated to building ever-larger telescopes to search for potentially habitable planets. But how will they know life is present without traveling there and watching creatures walk, fly, or slither around?

One way is by probing a planet's atmosphere. An atmosphere with the right mix of chemical elements is necessary to nurture and sustain life. Earth's atmosphere includes oxygen, nitrogen, methane, and carbon dioxide that have helped support life for billions of years. Earth's abundance of oxygen, especially, is a clue that our atmosphere's oxygen content is being replenished by biological processes.

Astronomers have been using a variety of ground- and space-based telescopes to analyze how the ingredients of Earth's atmosphere look from space, using our planet as a proxy for studying extrasolar planets' atmospheres. They hope to eventually compare Earth's atmospheric composition with those of other worlds to note similarities and differences. Taking advantage of a total lunar eclipse, astronomers using the Hubble telescope have detected ozone in Earth's atmosphere by looking at Earthlight reflected off the Moon. Our Moon came in handy as a giant mirror in space.

Ozone is a key ingredient in our planet's atmosphere. It forms naturally when oxygen is exposed to strong concentrations of ultraviolet light, which triggers chemical reactions. Ozone is Earth's security blanket, protecting life from deadly ultraviolet rays.

This is the first time a total lunar eclipse was captured at ultraviolet wavelengths and from a space telescope. This method simulates how astronomers will search for circumstantial evidence of life beyond Earth by looking for potential biosignatures on extrasolar planets.

Using a space telescope for eclipse observations reproduces the conditions under which future telescopes would measure atmospheres of extrasolar planets that pass in front of their stars. These atmospheres may contain chemical signatures very similar to Earth, and pique our curiosity to wonder if we are not alone in the universe.

(More at HubbleSite.com)
 

Robby

The News Robot
Joined
Jul 28, 2004
Location
Terra
Science Release: Hubble Makes the First Observation of a Total Lunar Eclipse By a Space Telescope

heic2013a.jpg

heic2013a.jpg
Taking advantage of a total lunar eclipse, astronomers using the NASA/ESA Hubble Space Telescope have detected ozone in Earth’s atmosphere. This method serves as a proxy for how they will observe Earth-like planets around other stars in the search for life. This is the first time a total lunar eclipse was captured from a space telescope and the first time such an eclipse has been studied in ultraviolet wavelengths.

(More at HubbleSite.com)
 

Robby

The News Robot
Joined
Jul 28, 2004
Location
Terra
Hubble Uses Earth as a Proxy for Identifying Oxygen on Potentially Habitable Planets Around Other Stars

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1356/low_STScI-H-p2030a-k-1340x520.png

Astronauts who have gazed at Earth from space have been awestruck at our blue marble planet's majesty and diversity. Mike Massimino, who helped service the Hubble Space Telescope in orbit, said, "I think of our planet as a paradise. We are very lucky to be here."

What's mind-blowing is that astronomers estimate there could be as many as 1 billion other planets like Earth in our Milky Way galaxy alone. Just imagine, one billion – not million – other "paradise planets." But it's paradise lost if nothing is living there to marvel at sunsets in azure blue skies. And, as 19th century philosopher Thomas Carlyle mused, "…what a waste of space."

It is sobering that our home planet is the only known place in the universe where life as we know it exists and thrives. And so, we gaze outward to the stars, imprisoned by space and time, into a cosmic loneliness. That's why scientists are dedicated to building ever-larger telescopes to search for potentially habitable planets. But how will they know life is present without traveling there and watching creatures walk, fly, or slither around?

One way is by probing a planet's atmosphere. An atmosphere with the right mix of chemical elements is necessary to nurture and sustain life. Earth's atmosphere includes oxygen, nitrogen, methane, and carbon dioxide that have helped support life for billions of years. Earth's abundance of oxygen, especially, is a clue that our atmosphere's oxygen content is being replenished by biological processes.

Astronomers have been using a variety of ground- and space-based telescopes to analyze how the ingredients of Earth's atmosphere look from space, using our planet as a proxy for studying extrasolar planets' atmospheres. They hope to eventually compare Earth's atmospheric composition with those of other worlds to note similarities and differences. Taking advantage of a total lunar eclipse, astronomers using the Hubble telescope have detected ozone in Earth's atmosphere by looking at Earthlight reflected off the Moon. Our Moon came in handy as a giant mirror in space.

Ozone is a key ingredient in our planet's atmosphere. It forms naturally when oxygen is exposed to strong concentrations of ultraviolet light, which triggers chemical reactions. Ozone is Earth's security blanket, protecting life from deadly ultraviolet rays.

This is the first time a total lunar eclipse was captured at ultraviolet wavelengths and from a space telescope. This method simulates how astronomers will search for circumstantial evidence of life beyond Earth by looking for potential biosignatures on extrasolar planets.

Using a space telescope for eclipse observations reproduces the conditions under which future telescopes would measure atmospheres of extrasolar planets that pass in front of their stars. These atmospheres may contain chemical signatures very similar to Earth, and pique our curiosity to wonder if we are not alone in the universe.

(More at HubbleSite.com)
 

Robby

The News Robot
Joined
Jul 28, 2004
Location
Terra
Hubble Uses Earth as a Proxy for Identifying Oxygen on Potentially Habitable Planets Around Other Stars

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1356/low_STScI-H-p2030a-k-1340x520.png

Astronauts who have gazed at Earth from space have been awestruck at our blue marble planet's majesty and diversity. Mike Massimino, who helped service the Hubble Space Telescope in orbit, said, "I think of our planet as a paradise. We are very lucky to be here."

What's mind-blowing is that astronomers estimate there could be as many as 1 billion other planets like Earth in our Milky Way galaxy alone. Just imagine, one billion – not million – other "paradise planets." But it's paradise lost if nothing is living there to marvel at sunsets in azure blue skies. And, as 19th century philosopher Thomas Carlyle mused, "…what a waste of space."

It is sobering that our home planet is the only known place in the universe where life as we know it exists and thrives. And so, we gaze outward to the stars, imprisoned by space and time, into a cosmic loneliness. That's why scientists are dedicated to building ever-larger telescopes to search for potentially habitable planets. But how will they know life is present without traveling there and watching creatures walk, fly, or slither around?

One way is by probing a planet's atmosphere. An atmosphere with the right mix of chemical elements is necessary to nurture and sustain life. Earth's atmosphere includes oxygen, nitrogen, methane, and carbon dioxide that have helped support life for billions of years. Earth's abundance of oxygen, especially, is a clue that our atmosphere's oxygen content is being replenished by biological processes.

Astronomers have been using a variety of ground- and space-based telescopes to analyze how the ingredients of Earth's atmosphere look from space, using our planet as a proxy for studying extrasolar planets' atmospheres. They hope to eventually compare Earth's atmospheric composition with those of other worlds to note similarities and differences. Taking advantage of a total lunar eclipse, astronomers using the Hubble telescope have detected ozone in Earth's atmosphere by looking at Earthlight reflected off the Moon. Our Moon came in handy as a giant mirror in space.

Ozone is a key ingredient in our planet's atmosphere. It forms naturally when oxygen is exposed to strong concentrations of ultraviolet light, which triggers chemical reactions. Ozone is Earth's security blanket, protecting life from deadly ultraviolet rays.

This is the first time a total lunar eclipse was captured at ultraviolet wavelengths and from a space telescope. This method simulates how astronomers will search for circumstantial evidence of life beyond Earth by looking for potential biosignatures on extrasolar planets.

Using a space telescope for eclipse observations reproduces the conditions under which future telescopes would measure atmospheres of extrasolar planets that pass in front of their stars. These atmospheres may contain chemical signatures very similar to Earth, and pique our curiosity to wonder if we are not alone in the universe.

(More at HubbleSite.com)
 
Top Bottom