Space Hubble Telescope News

New Hubble Constant Measurement Adds to Mystery of Universe's Expansion Rate

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1302/low_STSCI-H-p1928a-k-1340x520.png

In 1924, American astronomer Edwin Hubble announced that he discovered galaxies outside of our Milky Way by using the powerful new Hooker telescope perched above Los Angeles. By measuring the distances to these galaxies, he realized the farther away a galaxy is, the faster it appears to be receding from us. This was incontrovertible evidence the universe is uniformly expanding in all directions. For nearly a decade Albert Einstein refused to accept the observational evidence. His theory of general relativity described a static universe. But this could only be accomplished by invoking a "cosmological constant," which he described as repulsive property of space that would counterbalance the pull of gravity and prevent the universe from imploding. The expansion rate is the basis of the Hubble constant. It is a sought-after value because it yields clues to the origin, age, evolution, and future fate of our universe.

For nearly the past century astronomers have worked meticulously to precisely measure the Hubble constant. Before the Hubble Space Telescope was launched in 1990, the universe's age was thought to lie between 10 and 20 billion years, based on different estimates of the Hubble constant. Improving this value was one of the biggest justifications for building the Hubble telescope. This paid off in the early 1990s when a team led by Wendy Freedman of the University of Chicago greatly refined the Hubble constant value to a precision of 10%. This was possible because the Hubble telescope is so sharp at finding and measuring Cepheid variable stars as milepost markers — just as Edwin Hubble did 70 years earlier.

But astronomers strive for ever greater precision, and this requires further refining yardsticks for measuring vast intergalactic distances of billions of light-years. Freedman's latest research looks at aging red giant stars in nearby galaxies. They are also milepost markers because they all reach the same peak brightness at a critical stage of their late evolution. This can be used to calculate distances.

Freedman's research is one of several recent studies that point to a nagging discrepancy between the universe's modern expansion rate and predictions based on the universe as it was more than 13 billion years ago, as measured by the European Space Agency's Planck satellite. This latest measurement offers new evidence suggesting that there may be something fundamentally flawed in the current model of the universe.

(More at HubbleSite.com)
 
Hubble's New Portrait of Jupiter

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1306/low_STSCI-H-p1936a-k-1340x520.png

Jupiter is the king of the solar system, more massive than all of the other solar-system planets combined. Although astronomers have been observing the gas-giant planet for hundreds of years, it still remains a mysterious world.

Astronomers don't have definitive answers, for example, of why cloud bands and storms change colors, or why storms shrink in size. The most prominent long-lasting feature, the Great Red Spot, has been downsizing since the 1800s. However, the giant storm is still large enough to swallow Earth.

The Red Spot is anchored in a roiling atmosphere that is powered by heat welling up from the monster planet's deep interior, which drives a turbulent atmosphere. In contrast, sunlight powers Earth's atmosphere. From Jupiter, however, the Sun is much fainter because the planet is much farther away from it. Jupiter's upper atmosphere is a riot of colorful clouds, contained in bands that whisk along at different wind speeds and in alternating directions. Dynamic features such as cyclones and anticyclones (high-pressure storms that rotate counterclockwise in the southern hemisphere) abound.

Attempting to understand the forces driving Jupiter's atmosphere is like trying to predict the pattern cream will make when it is poured into a hot cup of coffee. Researchers are hoping that Hubble's yearly monitoring of the planet—as an interplanetary weatherman—will reveal the shifting behavior of Jupiter's clouds. Hubble images should help unravel many of the planet's outstanding puzzles. This new Hubble image is part of that yearly study, called the Outer Planets Atmospheres Legacy program, or OPAL.

(More at HubbleSite.com)
 
Hubble Explores the Formation and Evolution of Star Clusters in the Large Magellanic Cloud

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1308/low_STSCI-p1942a-k-1340x520.jpg

Like batches of cookies, stars are born together in groups. These star clusters, containing as many as 1 million members, evolve over time largely through a gravitational pinball where more massive stars are segregated from lower mass stars. Heavy stars tend to progressively sink toward the central region of the star cluster, while low-mass stars can escape from the system.

For the first time, the Hubble Space Telescope has been used to measure the effects of this dynamical aging on star clusters. They are all located 160,000 light-years from Earth in a satellite galaxy, the Large Magellanic Cloud (LMC). The diminutive galaxy is an ideal target because it hosts a selection of easily observed star clusters covering a wide range of ages.

Francesco Ferraro of the University of Bologna in Italy and his team used Hubble to observe five aging LMC star clusters — all born at about the same time but with different sizes — and succeeded in ranking them in terms of the level of dynamical evolution, which affects their shape.

(More at HubbleSite.com)
 
Saturn's Rings Shine in New Hubble Portrait

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1309/low_STSCI-H-p1943a-k-1340x520.png

Saturn is so beautiful that astronomers cannot resist using the Hubble Space Telescope to take yearly snapshots of the ringed world when it is near its closest distance to Earth.

These images, however, are more than just beauty shots. They reveal a planet with a turbulent, dynamic atmosphere. This year's Hubble offering, for example, shows that a large storm visible in the 2018 Hubble image in the north polar region has vanished. Smaller storms pop into view like popcorn kernels popping in a microwave oven before disappearing just as quickly. Even the planet's banded structure reveals subtle changes in color.

But the latest image shows plenty that hasn't changed. The mysterious six-sided pattern, called the "hexagon," still exists on the north pole. Caused by a high-speed jet stream, the hexagon was first discovered in 1981 by NASA's Voyager 1 spacecraft.

Saturn's signature rings are still as stunning as ever. The image reveals that the ring system is tilted toward Earth, giving viewers a magnificent look at the bright, icy structure. Hubble resolves numerous ringlets and the fainter inner rings.

This image reveals an unprecedented clarity only seen previously in snapshots taken by NASA spacecraft visiting the distant planet. Astronomers will continue their yearly monitoring of the planet to track shifting weather patterns and identify other changes. The second in the yearly series, this image is part of the Outer Planets Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system's gas giant planets.

(More at HubbleSite.com)
 
Hubble Observes First Confirmed Interstellar Comet

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1314/low_STSCI-H-p1953a-k-1340x520.png

No one knows where it came from. No one knows how long it has been drifting through the empty, cold abyss of interstellar space. But this year an object called comet 2I/Borisov came in from the cold. It was detected falling past our Sun by a Crimean amateur astronomer. This emissary from the black unknown captured the attention of worldwide astronomers who aimed all kinds of telescopes at it to watch the comet sprout a dust tail. The far visitor is only the second known object to enter our solar system coming from elsewhere in the galaxy, based on its speed and trajectory. Like a racetrack photographer trying to capture a speeding derby horse, Hubble took a series of snapshots as the comet streaked along at 110,000 miles per hour. Hubble provided the sharpest image to date of the fleeting comet, revealing a central concentration of dust around an unseen nucleus. The comet was 260 million miles from Earth when Hubble took the photo.

In 2017, the first identified interstellar visitor, an object formally named 'Oumuamua, swung within 24 million miles of the Sun before racing out of the solar system. Unlike comet 2I/Borisov, 'Oumuamua still defies any simple categorization. It did not behave like a comet, and it has a variety of unusual characteristics. Comet 2I/Borisov looks a lot like the traditional comets found inside our solar system, which sublimate ices, and cast off dust as they are warmed by the Sun. The wandering comet provides invaluable clues to the chemical composition, structure, and dust characteristics of planetary building blocks presumably forged in an alien star system.

(More at HubbleSite.com)
 
Hubble Captures Galaxies' Ghostly Gaze

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1316/low_STSCI-H-p1951a-k-1340x520.png

The universe is a bubbling cauldron of matter and energy that have mixed together over billions of years to create a witches' brew of birth and destruction.

Firestorms of star birth sweeping across the heavens. Dying stars rattling the very fabric of space in titanic explosions. Death Star-like beams of energy blasting out of overfed black holes at nearly the speed of light. Large galaxies devouring smaller companions, like cosmic Pac-Men. Colossal collisions between galaxies flinging stars around like breaking pool balls. Hubble has seen them all.

This compulsive mayhem in space can produce weird-looking shapes that resemble creepy creatures seemingly conjured up in stories of the paranormal. Among them is the object in this new Hubble image.

The snapshot reveals what looks like an uncanny pair of glowing eyes glaring menacingly in our direction. The piercing "eyes" are the most prominent feature of what resembles the face of an otherworldly creature. This frightening object is actually the result of a titanic head-on collision between two galaxies.

Each "eye" is the bright core of a galaxy, the result of one galaxy slamming into another. The outline of the face is a ring of young blue stars. Other clumps of new stars form a nose and mouth.

The system is catalogued as Arp-Madore 2026-424, from the Arp-Madore "Catalogue of Southern Peculiar Galaxies and Associations."

Although galaxy collisions are common—especially back in the young universe—most of them are not head-on smashups, like the collision that likely created this Arp-Madore system. The violent encounter gives the system an arresting "ring" structure for only a short amount of time, about 100 million years. The two galaxies will merge completely in about 1 to 2 billion years, hiding their messy past.

(More at HubbleSite.com)
 
STScI Astronomers Kathryn Flanagan and Colin Norman Elected AAAS Fellows

http://imgsrc.hubblesite.org/hvi/up...ge/1325/low_Kathy-Norman-p1936a1-1340x520.jpg

The American Association for the Advancement of Science (AAAS) Council has elected Kathryn Flanagan of the Space Telescope Science Institute (STScI) and Colin Norman of STScI and Johns Hopkins University, and 441 other AAAS members as Fellows of the AAAS.

Dr. Flanagan is cited by the AAAS for her lead role calibrating grating spectrometers for NASA's Chandra X-ray Observatory mission; X-ray observations of astrophysical plasmas; and leadership in the James Webb Space Telescope project.

Dr. Norman is cited by the AAAS for distinguished contributions to an array of subjects in theoretical astrophysics, especially in the areas of the interstellar medium, galaxy dynamics, star formation, and galaxy clusters.

For more information about this announcement, visit the AAAS website.

(More at HubbleSite.com)
 
NASA's Great Observatories Help Astronomers Build a 3D Visualization of Exploded Star

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1332/low_STSCI-H-p2003a-k-1340x520.png

In the year 1054 AD, Chinese sky watchers witnessed the sudden appearance of a "new star" in the heavens, which they recorded as six times brighter than Venus, making it the brightest observed stellar event in recorded history. This "guest star," as they described it, was so bright that people saw it in the sky during the day for almost a month. Native Americans also recorded its mysterious appearance in petroglyphs.

Observing the nebula with the largest telescope of the time, Lord Rosse in 1844 named the object the "Crab" because of its tentacle-like structure. But it wasn't until the 1900s that astronomers realized the nebula was the surviving relic of the 1054 supernova, the explosion of a massive star.

Now, astronomers and visualization specialists from the NASA's Universe of Learning program have combined the visible, infrared, and X-ray vision of NASA's Great Observatories to create a three-dimensional representation of the dynamic Crab Nebula.

The multiwavelength computer graphics visualization is based on images from the Chandra X-ray Observatory and the Hubble and Spitzer space telescopes. The approximately four-minute video dissects the intricate nested structure that makes up this stellar corpse, giving viewers a better understanding of the extreme and complex physical processes powering the nebula. The powerhouse "engine" energizing the entire system is a pulsar, a rapidly spinning neutron star, the super-dense crushed core of the exploded star. The tiny dynamo is blasting out blistering pulses of radiation 30 times a second with unbelievable clockwork precision.

(More at HubbleSite.com)
 
NASA's Hubble Surveys Gigantic Galaxy

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1330/low_STSCI-H-p2001a-k-1340x520.png

Galaxies are like snowflakes. Though the universe contains innumerable galaxies flung across time and space, no two ever look alike. One of the most photogenic is the huge spiral galaxy UGC 2885, located 232 million light-years away in the northern constellation, Perseus. It's a whopper even by galactic standards. The galaxy is 2.5 times wider than our Milky Way and contains 10 times as many stars, about 1 trillion. This galaxy has lived a quiescent life by not colliding with other large galaxies. It has gradually bulked up on intergalactic hydrogen to make new stars at a slow and steady pace over many billions of years. The galaxy has been nicknamed "Rubin's galaxy," after astronomer Vera Rubin (1928 – 2016). Rubin used the galaxy to look for invisible dark matter. The galaxy is embedded inside a vast halo of dark matter. The amount of dark matter can be estimated by measuring its gravitational influence on the galaxy's rotation rate.

(More at HubbleSite.com)
 
Hubble Detects Smallest Known Dark Matter Clumps

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1329/low_STSCI-H-p2005a-k-1340x520.png

When searching for dark matter, astronomers must go on a sort of "ghost hunt." That's because dark matter is an invisible substance that cannot be seen directly. Yet it makes up the bulk of the universe's mass and forms the scaffolding upon which galaxies are built. Dark matter is the gravitational "glue" that holds galaxies as well as galaxy clusters together. Astronomers can detect its presence indirectly by measuring how its gravity affects stars and galaxies.

The mysterious substance is not composed of the same stuff that makes up stars, planets, and people. That material is normal "baryonic" matter, consisting of electrons, protons, and neutrons. However, dark matter might be some sort of unknown subatomic particle that interacts weakly with normal matter.

A popular theory holds that dark matter particles don't move very fast, which makes it easier for them to clump together. According to this idea, the universe contains a broad range of dark matter concentrations, from small to large.

Astronomers have detected dark matter clumps around large- and medium-sized galaxies. Now, using Hubble and a new observing technique, astronomers have found that dark matter forms much smaller clumps than previously known.

The researchers searched for small concentrations of dark matter in the Hubble data by measuring how the light from faraway quasars is affected as it travels through space. Quasars are the bright black-hole-powered cores of very distant galaxies. The Hubble images show that the light from these quasars images is warped and magnified by the gravity of massive foreground galaxies in an effect called gravitational lensing. Astronomers used this lensing effect to detect the small dark matter clumps. The clumps are located along the telescope’s line of sight to the quasars, as well as in and around the foreground lensing galaxies.

(More at HubbleSite.com)
 
Cosmic Magnifying Glasses Yield Independent Measure of Universe's Expansion

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1328/low_STSCI-H-p2004a-k-1340x520.png

People use the phrase "Holy Cow" to express excitement. Playing with that phrase, researchers from an international collaboration developed an acronym—H0LiCOW—for their project's name that expresses the excitement over their Hubble Space Telescope measurements of the universe's expansion rate.

Knowing the precise value for how fast the universe expands is important for determining the age, size, and fate of the cosmos. Unraveling this mystery has been one of the greatest challenges in astrophysics in recent years.

Members of the H0LiCOW (H0 Lenses in COSMOGRAIL's Wellspring) team used Hubble and a technique that is completely independent of any previous method to measure the universe's expansion, a value called the Hubble constant.

This latest value represents the most precise measurement yet using the gravitational lensing method, where the gravity of a foreground galaxy acts like a giant magnifying lens, amplifying and distorting light from background objects. The study new not rely on the traditional "cosmic distance ladder" technique to measure accurate distances to galaxies by using various types of stars as "milepost markers." Instead, the researchers employed the exotic physics of gravitational lensing to calculate the universe's expansion rate.

The researchers' result further strengthens a troubling discrepancy between the expansion rate calculated from measurements of the local universe and the rate as predicted from background radiation in the early universe, a time before galaxies and stars even existed. The new study adds evidence to the idea that new theories may be needed to explain what scientists are finding.

(More at HubbleSite.com)
 
Hubble Team Wins the 2020 Michael Collins Trophy

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1341/low_STSCI-H-p2017a-k-1340x520.jpg

Through its 30 years of discoveries and awesome celestial images, the legendary Hubble Space Telescope has redefined the universe for new generations of astronomers and the public alike. This would not have been possible without the perseverance and expertise of a team of Hubble operations experts at the Space Telescope Science Institute, NASA's Goddard Space Flight Center, and the Lockheed Martin Corporation.

In recognition of Hubble's scientific prowess and longevity, the National Air and Space Museum in Washington, D.C. has awarded their 2020 Collins Trophy for Current Achievement to the Hubble operations team.

"Through the efforts of the Hubble team the observatory has continued to produce research unachievable with any other instrument. System engineers in Hubble's control center and science operations facility have continued to find creative ways to operate the 30-year-old spacecraft to make this revolutionary science possible ensuring its capabilities will continue for years to come," the museum reported.

The Collins Trophy recognizes achievements involving the management or execution of a scientific or technological project, a distinguished career of service in air and space technology, or a significant contribution in chronicling the history of air and space technology.

(More at HubbleSite.com)
 
NASA Awards Prize Postdoctoral Fellowships for 2020

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1344/low_STSCI-H-p2020a-k1340x520.png

NASA has selected 24 new Fellows for its prestigious NASA Hubble Fellowship Program (NHFP). The program enables outstanding postdoctoral scientists to pursue independent research in any area of NASA Astrophysics, using theory, observation, experimentation, or instrument development. Each fellowship provides the awardee up to three years of support at a university or research center of their choosing in the United States.

(More at HubbleSite.com)
 
Hubble Finds Best Evidence for Elusive Mid-Sized Black Hole

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1343/low_STSCI-H-p2019a-k-1340x520.png

Like detectives carefully building a case, astronomers gathered evidence and eliminated suspects until they found the best evidence yet that the death of a star, first witnessed in X-rays, could be traced back to an elusive mid-sized black hole. The result is a long-sought win for astronomy, as the mid-sized "missing link" in the black hole family has thus far thwarted detection. NASA's Hubble Space Telescope was used to follow up on multiple X-ray observations of a suspected tidal disruption event. This is caused when a wayward star comes too close to the gravity well of a black hole and gets shredded by its tidal forces. The intense heat from stellar cannibalism betrays the black hole's presence with a burst of X-rays. Hubble resolved the source region of this X-ray flare as a star cluster outside the Milky Way galaxy. Such clusters have been considered likely places to find an intermediate-mass black hole. The discovery eliminated the possibility that the X-rays came from another type of source within the Milky Way.

(More at HubbleSite.com)
 
Exoplanet Apparently Disappears in Latest Hubble Observations

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1336/low_STSCI-H-p2009a-k-1340x520.png

What do astronomers do when a planet they are studying suddenly seems to disappear from sight? In the legendary Star Wars galaxy (you know, "a long time ago and far, far away") the planet might have been the victim of the evil empire's planet-zapping Death Star. But this is pretty improbable in our own cosmic back yard. The missing-in-action planet was last seen orbiting the star Fomalhaut, just 25 light-years away. (In fact, Fomalhaut is so close to us that it's one of the brightest stars in the sky, in the constellation of Pisces Austrinus, the Southern Fish.)

A team of researchers from the University of Arizona believe a full-grown planet never existed in the first place. Instead, they concluded that the Hubble Space Telescope was looking at an expanding cloud of very fine dust particles from two icy bodies that smashed into each other. Hubble came along too late to witness the suspected collision, but may have captured its aftermath. This happened in 2008, when astronomers eagerly announced that Hubble took its first image of a planet orbiting another star. The diminutive-looking object appeared as a dot next to a vast ring of icy debris encircling Fomalhaut. In following years, they tracked the planet along its trajectory. But over time the dot, based on their analysis of Hubble data, got fainter until it simply dropped out of sight, say the researchers, as they pored through the Hubble archival data.

Asteroid families in our own solar system are considered fossil relics of such collisions which happened here billions of years ago, in the solar system's rambunctious youth. But no such cataclysm has ever been seen happening around another star. Why? In the case of Fomalhaut, such smashups are estimated to happen once every 200,000 years. Therefore, Hubble astronomers may have been lucky enough to be looking at the right place at the right time.

Follow-up observations will likely be needed to test this startling conclusion.

(More at HubbleSite.com)
 
Hubble Marks 30 Years in Space with Tapestry of Blazing Starbirth

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1351/low_STSCI-H-p2016a-k-1340x520.png

A colorful image resembling a cosmic version of an undersea world teeming with stars is being released to commemorate the Hubble Space Telescope's 30 years of viewing the wonders of space.

In the Hubble portrait, the giant red nebula (NGC 2014) and its smaller blue neighbor (NGC 2020) are part of a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, located 163,000 light-years away. The image is nicknamed the "Cosmic Reef," because NGC 2014 resembles part of a coral reef floating in a vast sea of stars.

Some of the stars in NGC 2014 are monsters. The nebula's sparkling centerpiece is a grouping of bright, hefty stars, each 10 to 20 times more massive than our Sun. The seemingly isolated blue nebula at lower left (NGC 2020) has been created by a solitary mammoth star 200,000 times brighter than our Sun. The blue gas was ejected by the star through a series of eruptive events during which it lost part of its outer envelope of material.

(More at HubbleSite.com)
 
WFIRST Telescope Named For ‘Mother of Hubble’ Nancy Grace Roman

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1363/low_STScI-H-p2035a-k-1340x520.png

Today, NASA announced that it is naming its next-generation space telescope, the Wide Field Infrared Survey Telescope (WFIRST), in honor of Dr. Nancy Grace Roman, NASA’s first Chief Astronomer, who paved the way for space telescopes focused on the broader universe. The newly named Nancy Grace Roman Space Telescope (or Roman Space Telescope, for short), is set to launch in the mid-2020s. The Space Telescope Science Institute will serve as the science operations center for the Roman Space Telescope. In that role, the Institute will plan, schedule, and carry out observations, process and archive mission datasets, and engage and inform the astronomical community and the public.

(More at HubbleSite.com)
 
Hubble Provides Holistic View of Stars Gone Haywire

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1357/low_STScI-H-p2031a-k-1340x520.png

For stars nearing the end of their lives, the forecast is clear: It's time for the fireworks!

Planetary nebulas, whose stars shed their layers over thousands of years, can turn into crazy whirligigs while puffing off shells and jets of hot gas. New images from the Hubble Space Telescope have helped researchers identify rapid changes in material blasting off stars at the centers of two nebulas — causing them to reconsider what is happening at their cores.

In the case of NGC 6302, dubbed the Butterfly Nebula, two S-shaped streams indicate its most recent ejections and may be the result of two stars interacting at the nebula's core. In NGC 7027, a new cloverleaf pattern — with bullets of material shooting out in specific directions — may also point to the interactions of two central stars. Both nebulas are splitting themselves apart on extremely short timescales, allowing researchers to measure changes in their structures over only a few decades.

This is the first time both nebulas have been studied from near-ultraviolet to near-infrared light, a complex, multi-wavelength view only possible with Hubble.

(More at HubbleSite.com)
 
Hubble Sees Summertime on Saturn

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1367/low_STScI-H-p2043a-k-1340x520.png

Watching Saturn and Earth from afar, space alien astronomers would note that Earth whips around the Sun nearly 30 times for every one orbit Saturn completes. That's because Earth is 10 times closer to the Sun than Saturn, and hence caught in the Sun's tighter gravitational grasp. Every time Earth "laps" sluggish Saturn, like two NASCAR racers, astronomers aim Hubble at the glamorous world to get a close-up look. Like Earth, Saturn is tilted on its axis and so goes through seasons. In this snapshot it is summer in the northern hemisphere. Hubble's crisp view shows multiple banded cloud activity warmed increasingly by direct sunlight. The spectacular ring system remains as mysterious as it is gorgeous. Astronomers still debate intensely if the rings are a relatively new decoration to the gas giant planet, or if they're as old as the solar system itself.

(More at HubbleSite.com)
 
Hubble Snaps Close-Up of Celebrity Comet NEOWISE

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1374/low_STScI-H-p2045a-k-1340x520.png

Whether it’s a surprise asteroid, colorful aurora or a heart-stopping eclipse, the landscape of the night sky is constantly changing. When a new visitor appears in view, it’s guaranteed to grab the attention of professional astronomers and casual sky gazers alike. Well, consider the Hubble Space Telescope the paparazzi of the sky, as it’s managed to snap the closest images yet of the sky’s latest visitor to make headlines, comet C/2020 F3 (NEOWISE), after it passed by the Sun.

Comet NEOWISE is considered the brightest comet visible from the Northern Hemisphere since 1997’s Hale-Bopp. It’s estimated to be traveling at a whopping 40 miles per second, or 144,000 miles per hour. The comet’s closest approach to the Sun took place on July 3 and it’s now heading back to the outer parts of the solar system, not to pass through again for another 7,000 years or so.

(More at HubbleSite.com)
 
Back
Top