Space Hubble Telescope News

NASA's James Webb Space Telescope Early Science Observations Revealed

low_STScI-J-p1739a_k1340x520.png


First Publicly Available Science Observations for Webb Announced

The Space Telescope Science Institute is announcing some of the first science programs NASA's James Webb Space Telescope will conduct following its launch and commissioning. These specific observations are part of a program of Director’s Discretionary Early Release Science (DD-ERS), which will provide the scientific community with immediate access to Webb data. These data will help inform proposals for observations in the second year of Webb operations. The 13 ERS programs will address a broad variety of science areas, from black hole growth and the assembly of galaxies to star formation and the study of exoplanets.

(More at HubbleSite.com)
 
NASA's James Webb Space Telescope to Reveal Secrets of the Red Planet

low_STSCI-H-p1810a-k-1340x520.png


Webb will investigate how Mars went from wet to dry

Mars rovers and orbiters have found signs that Mars once hosted liquid water on its surface. Much of that water escaped over time. How much water was lost, and how does the water that’s left move from ice to atmosphere to soil? During its first year of operations, NASA’s James Webb Space Telescope will seek answers. Webb also will study mysterious methane plumes that hint at possible geological or even biological activity.

(More at HubbleSite.com)
 
NASA's Webb Telescope to Make a Splash in the Search for Interstellar Water

low_STSCI-J-p1814a-k-1340x520.png


NASA's Webb Telescope Will Map Cosmic Ices

Most of the water in the universe floats in vast reservoirs called molecular clouds. It coats the surface of dust grains, turning them into cosmic snowflakes. When stars and planets form, those snowflakes get swept up, delivering key ingredients for life. NASA’s James Webb Space Telescope will map water and other cosmic ices to gain new insights into these building blocks for habitable planets.

(More at HubbleSite.com)
 
Kepler Solves Mystery of Fast and Furious Explosions

low_STSCI-H-p1818a-k-1340x520.png


Space Observatory Captures the Details of an Unusual Stellar Detonation

The universe is so huge that it's estimated that a star explodes as a supernova once every second. Astronomers capture a small fraction of these detonations because they are comparatively short-lived, like fireflies flickering on a summer evening. After skyrocketing to a sudden peak in brightness, a supernova can take weeks to slowly fade away.

For the past decade astronomers have been befuddled by a more curious "flash-in-the-pan" that pops up and then disappears in just a few days, not weeks. It's called a Fast-Evolving Luminous Transient (FELT). Only a few FELTs have been seen in telescopic sky surveys because they are so brief.

Then along came NASA's Kepler Space Telescope that caught a FELT in the act. Kepler's outstanding ability to precisely record changes in the brightness of celestial objects was designed to look for planets across our galaxy. But a great spinoff from the observatory is to go supernova hunting too.

Kelper's unique capabilities captured the properties of the blast. This allowed astronomers to exclude a range of theories about how FELTs happen, and converge on a plausible model. They conclude that the brief flash is from a vast shell of material around a supernova that abruptly lights up when the supernova blast wave crashes into it.

(More at HubbleSite.com)
 
Dark Matter Goes Missing in Oddball Galaxy

low_STSCI-H-p1816a-k-1340x520.png


Galaxy was expected to contain 400 times more dark matter than observations show

Grand, majestic spiral galaxies like our Milky Way are hard to miss. Astronomers can spot these vast complexes because of their large, glowing centers and their signature winding arms of gas and dust, where thousands of glowing stars reside.

But some galaxies aren't so distinctive. They are big, but they have so few stars for their size that they appear very faint and diffuse. In fact, they are so diffuse that they look like giant cotton balls.

Observations by NASA's Hubble Space Telescope of one such galaxy have turned up an oddity that sets it apart from most other galaxies, even the diffuse-looking ones. It contains little, if any, dark matter, the underlying scaffolding upon which galaxies are built. Dark matter is an invisible substance that makes up the bulk of our universe and the invisible glue that holds visible matter in galaxies — stars and gas — together.

Called NGC 1052-DF2, this "ghostly" galaxy contains at most 1/400th the amount of dark matter that astronomers had expected. How it formed is a complete mystery. The galactic oddball is as large as our Milky Way, but the galaxy had escaped attention because it contains only 1/200th the number of stars as our galaxy.

Based on the colors of its globular clusters, NGC 1052-DF2 is about 10 billion years old. It resides about 65 million light-years away.

(More at HubbleSite.com)
 
Hubble Makes the First Precise Distance Measurement to an Ancient Globular Star Cluster

low_STSCI-H-p1824a-k-1340x520.png


Refined stellar yardstick helps astronomers improve stellar evolution models

When you want to know the size of a room, you use a measuring tape to calculate its dimensions.

But you can’t use a tape measure to cover the inconceivably vast distances in space. And, until now, astronomers did not have an equally precise method to accurately measure distances to some of the oldest objects in our universe – ancient swarms of stars outside the disk of our galaxy called globular clusters.

Estimated distances to our Milky Way galaxy’s globular clusters were achieved by comparing the brightness and colors of stars to theoretical models and observations of local stars. But the accuracy of these estimates varies, with uncertainties hovering between 10 percent and 20 percent.

Using NASA’s Hubble Space Telescope, astronomers were able to use the same sort of trigonometry that surveyors use to precisely measure the distance to NGC 6397, one of the closest globular clusters to Earth. The only difference is that the angles measured in Hubble’s camera are infinitesimal by earthly surveyors’ standards.

The new measurement sets the cluster’s distance at 7,800 light-years away, with just a 3 percent margin of error, and provides an independent estimate for the age of the universe. The Hubble astronomers calculated NGC 6397 is 13.4 billion years old and so formed not long after the big bang. The new measurement also will help astronomers improve models of stellar evolution.

(More at HubbleSite.com)
 
Hubble's First Frontier Field Finds Thousands of Unseen, Faraway Galaxies

low_keystone.png


With the help of a natural "zoom lens" in space, Hubble astronomers are looking farther than anyone has before. The ambitious, collaborative, multiyear program among NASA's Great Observatories is called The Frontier Fields. The first of a set of unprecedented, super-deep views of the universe contain images of some of the intrinsically faintest and youngest galaxies ever detected. This is just the first of several primary target fields in the program. The immense gravity in this foreground galaxy cluster, Abell 2744, warps space to brighten and magnify images of far-more-distant background galaxies as they looked over 12 billion years ago, not long after the big bang. The Hubble exposure reveals nearly 3,000 of these background galaxies interleaved with images of hundreds of foreground galaxies in the cluster.

(More at HubbleSite.com)
 
Photo Release: Hubble celebrates 28th anniversary with a trip through the Lagoon Nebula

heic1808a.jpg

This colourful cloud of glowing interstellar gas is just a tiny part of the Lagoon Nebula, a vast stellar nursery. This nebula is a region full of intense activity, with fierce winds from hot stars, swirling chimneys of gas, and energetic star formation all embedded within a hazy labyrinth of gas and dust. Hubble used both its optical and infrared instruments to study the nebula, which was observed to celebrate Hubble’s 28th anniversary.

(More at HubbleSite.com)
 
Icy Moons, Galaxy Clusters, and Distant Worlds Among Selected Targets for James Webb Space Telescope

low_STScI-H-p1728k1340x520.png


Webb Telescope Guaranteed Time Observations Targets Announced

Mission officials for NASA’s James Webb Space Telescope announced some of the science targets the telescope will observe following its launch and commissioning. These specific observations are part of a program of Guaranteed Time Observations (GTO), which provides dedicated time to the scientists that helped design and build the telescope’s four instruments. The broad spectrum of initial GTO observations will address all of the science areas Webb is designed to explore, from first light and the assembly of galaxies to the birth of stars and planets. Targets will range from the solar system’s outer planets (Jupiter, Saturn, Uranus, and Neptune) and icy Kuiper Belt to exoplanets to distant galaxies in the young universe.

(More at HubbleSite.com)
 
NASA's James Webb Space Telescope Early Science Observations Revealed

low_STScI-J-p1739a_k1340x520.png


First Publicly Available Science Observations for Webb Announced

The Space Telescope Science Institute is announcing some of the first science programs NASA's James Webb Space Telescope will conduct following its launch and commissioning. These specific observations are part of a program of Director’s Discretionary Early Release Science (DD-ERS), which will provide the scientific community with immediate access to Webb data. These data will help inform proposals for observations in the second year of Webb operations. The 13 ERS programs will address a broad variety of science areas, from black hole growth and the assembly of galaxies to star formation and the study of exoplanets.

(More at HubbleSite.com)
 
Hubble 28th Anniversary Image Captures Roiling Heart of Vast Stellar Nursery

low_M8-UVIS-crop-1500-180302.png


Hubble celebrates 28th anniversary in style with stunning view of Lagoon Nebula

For 28 years, NASA’s Hubble Space Telescope has been delivering breathtaking views of the universe. Although the telescope has made more than 1.5 million observations of over 40,000 space objects, it is still uncovering stunning celestial gems.

The latest offering is this image of the Lagoon Nebula to celebrate the telescope’s anniversary. Hubble shows this vast stellar nursery in stunning unprecedented detail.

At the center of the photo, a monster young star 200,000 times brighter than our Sun is blasting powerful ultraviolet radiation and hurricane-like stellar winds, carving out a fantasy landscape of ridges, cavities, and mountains of gas and dust. This region epitomizes a typical, raucous stellar nursery full of birth and destruction.

(More at HubbleSite.com)
 
Hubble Uncovers the Farthest Star Ever Seen

low_STSCI-H-p1813a-d-1280x720.png


Cosmic Quirk Boosts Far-Off Star’s Faint Glow

Through a quirk of nature called “gravitational lensing,” a natural lens in space amplified a very distant star’s light. Astronomers using Hubble took advantage of this phenomenon to pinpoint the faraway star and set a new distance record for the farthest individual star ever seen. They also used the distant star to test one theory of dark matter, and to probe the make-up of a galaxy cluster. The team dubbed the star “Icarus,” after the Greek mythological character who flew too near the Sun on wings of feathers and wax that melted. Its official name is MACS J1149+2223 Lensed Star 1.

(More at HubbleSite.com)
 
NASA's James Webb Space Telescope Could Potentially Detect the First Stars and Black Holes

low_STSCI-J-p1823a-k1340x520.png


Gravitational lensing by a galaxy cluster could bring the early universe into focus for Webb

One of the key science goals of NASA’s James Webb Space Telescope is to learn about “first light,” the moment when the first stars and galaxies lit the universe. While the first galaxies will be within Webb’s reach, individual stars shine so faintly that Webb would not be able to detect them without help. That help could come in the form of natural magnification from gravitational lensing, according to a new theoretical paper.

A cluster of galaxies can provide the needed gravitational oomph to bring distant objects into focus via lensing. Typical gravitational lensing can boost a target’s brightness by a factor of 10 to 20. But in special circumstances, the light of a faraway star could be amplified by 10,000 times or more.

If Webb monitors several galaxy clusters a couple of times a year over its lifetime, chances are good that it will detect such a magnified star, or possibly the accretion disk of a black hole from the same era. This would give astronomers a key opportunity to learn about the actual properties of the early universe and compare them to computer models.

(More at HubbleSite.com)
 
Stellar Thief Is the Surviving Companion to a Supernova

low_STSCI-H-p1820a-k-1340x520.png


Companion to a Supernova Is No Innocent Bystander

In the fading afterglow of a supernova explosion, astronomers using NASA’s Hubble Space Telescope have photographed the first image of a surviving companion to a supernova. This is the most compelling evidence that some supernovas originate in double-star systems. The companion to supernova 2001ig’s progenitor star was no innocent bystander to the explosion—it siphoned off almost all of the hydrogen from the doomed star’s stellar envelope. SN 2001ig is categorized as a Type IIb stripped-envelope supernova, which is a relatively rare type of supernova in which most, but not all, of the hydrogen is gone prior to the explosion. Perhaps as many as half of all stripped-envelope supernovas have companions—the other half lose their outer envelopes via stellar winds.

(More at HubbleSite.com)
 
Hubble Captures the Shrouds of Dying Stars

The Hubble telescope continues to capture stunning, colorful snapshots of stellar burnout. These images reveal the beauty and complexity of planetary nebulae, the glowing relics of Sun-like stars.

This image of NGC 7027, for example, is one of the first infrared views of planetary nebulae taken with Hubble's infrared camera. In this picture, Hubble peers through the dusty core of a young planetary nebula to reveal the bright, central star. This picture also captures a young planetary nebula in a state of rapid transition.

(More at HubbleSite.com)
 
Hubble Captures the Shrouds of Dying Stars

The Hubble telescope continues to capture stunning, colorful snapshots of stellar burnout. These images reveal the beauty and complexity of planetary nebulae, the glowing relics of Sun-like stars.

This image of NGC 7027, for example, is one of the first infrared views of planetary nebulae taken with Hubble's infrared camera. In this picture, Hubble peers through the dusty core of a young planetary nebula to reveal the bright, central star. This picture also captures a young planetary nebula in a state of rapid transition.

(More at HubbleSite.com)
 
Hubble Detects Helium in the Atmosphere of an Exoplanet for the First Time

low_STSCI-H-p1827a-d-1280x720.png


Ballooning Atmosphere Extends Tens of Thousands of Miles Above a Gas Giant Planet

There may be no shortage of balloon-filled birthday parties or people with silly high-pitched voices on the planet WASP-107b. That's because NASA's Hubble Space Telescope was used to detect helium in the atmosphere for the first time ever on a world outside of our solar system. The discovery demonstrates the ability to use infrared spectra to study exoplanet atmospheres.

Though as far back as 2000 helium was predicted to be one of the most readily-detectable gases on giant exoplanets, until now helium had not been found — despite searches for it. Helium was first discovered on the Sun, and is the second-most common element in the universe after hydrogen. It's one of the main constituents of the planets Jupiter and Saturn.

An international team of astronomers led by Jessica Spake of the University of Exeter, UK, used Hubble's Wide Field Camera 3 to discover helium. The atmosphere of WASP-107b must stretch tens of thousands of miles out into space. This is the first time that such an extended atmosphere has been discovered at infrared wavelengths.

(More at HubbleSite.com)
 
Science Release: Hubble detects helium in the atmosphere of an exoplanet for the first time

heic1809a.jpg

Astronomers using the NASA/ESA Hubble Space Telescope have detected helium in the atmosphere of the exoplanet WASP-107b. This is the first time this element has been detected in the atmosphere of a planet outside the Solar System. The discovery demonstrates the ability to use infrared spectra to study exoplanet extended atmospheres.

(More at HubbleSite.com)
 
The 20th Anniversary of the Hubble Space Telescope's STIS Instrument

low_STSCI-H-p1706a-k1340x520.png


Twenty years ago, astronauts on the second servicing mission to the Hubble Space Telescope installed the Space Telescope Imaging Spectrograph (STIS) aboard Hubble. This pioneering instrument combines a camera with a spectrograph, which provides a "fingerprint" of a celestial object's temperature, chemical composition, density, and motion. STIS also reveals changes in the evolving universe and leads the way in the field of high-contrast imaging. The versatile instrument is sensitive to a wide range of wavelengths of light, from ultraviolet through the optical and into the near-infrared. From studying black holes, monster stars, and the intergalactic medium, to analyzing the atmospheres of worlds around other stars, STIS continues its epic mission to explore the universe.

(More at HubbleSite.com)
 
Hubble Dates Black Hole’s Last Big Meal

low_STSCI-H-G1710a-k1340x520.png


About 6 million years ago, when our very remote ancestors began to evolve away from chimpanzees, our Milky Way galaxy's hefty black hole was enjoying a sumptuous feast. It gulped down a huge clump of interstellar hydrogen.

Now, eons later, we see the result of the black hole feast. The black hole "burped" hot plasma that is now towering far above and below the plane of our galaxy. These invisible bubbles, weighing the equivalent of millions of suns, are called the Fermi Bubbles. Their energetic gamma-ray glow was first discovered in 2010 by NASA's Fermi Gamma-ray Space Telescope. (Enrico Fermi was an Italian physicist who created the world's first nuclear reactor.)

Astronomers have wondered how long ago the gaseous lobes were created, and if the process was slow or rapid. Hubble observations of the northern bubble have solved the question by determining a more precise age for the bubbles. Hubble was used to measure the speed of the gasses in the billowing bubbles, and astronomers could then calculate back to the time when they were born in a fast, energetic event.

(More at HubbleSite.com)
 
Back
Top