Space Hubble Telescope News

Icy Moons, Galaxy Clusters, and Distant Worlds Among Selected Targets for James Webb Space Telescope

low_STScI-H-p1728k1340x520.png


Mission officials for NASA’s James Webb Space Telescope announced some of the science targets the telescope will observe following its launch and commissioning. These specific observations are part of a program of Guaranteed Time Observations (GTO), which provides dedicated time to the scientists that helped design and build the telescope’s four instruments. The broad spectrum of initial GTO observations will address all of the science areas Webb is designed to explore, from first light and the assembly of galaxies to the birth of stars and planets. Targets will range from the solar system’s outer planets (Jupiter, Saturn, Uranus, and Neptune) and icy Kuiper Belt to exoplanets to distant galaxies in the young universe.

(More at HubbleSite.com)
 
NASA's James Webb Space Telescope Early Science Observations Revealed

low_STScI-J-p1739a_k1340x520.png


The Space Telescope Science Institute is announcing some of the first science programs NASA's James Webb Space Telescope will conduct following its launch and commissioning. These specific observations are part of a program of Director’s Discretionary Early Release Science (DD-ERS), which will provide the scientific community with immediate access to Webb data. These data will help inform proposals for observations in the second year of Webb operations. The 13 ERS programs will address a broad variety of science areas, from black hole growth and the assembly of galaxies to star formation and the study of exoplanets.

(More at HubbleSite.com)
 
Science Release: Hubble proves Einstein correct on galactic scales

heic1812a.jpg

An international team of astronomers using the NASA/ESA Hubble Space Telescope and the European Southern Observatory’s Very Large Telescope has made the most precise test of general relativity yet outside our Milky Way. The nearby galaxy ESO 325-G004 acts as a strong gravitational lens, distorting light from a distant galaxy behind it to create an Einstein ring around its centre. By comparing the mass of ESO 325-G004 with the curvature of space around it, the astronomers found that gravity on these astronomical length-scales behaves as predicted by general relativity. This rules out some alternative theories of gravity.

(More at HubbleSite.com)
 
Science Release: Hubble sees `Oumuamua getting a boost

heic1813a.jpg

`Oumuamua, the first interstellar object discovered in the Solar System, is moving away from the Sun faster than expected. This anomalous behaviour was detected using the NASA/ESA Hubble Space Telescope in cooperation with ground-based telescopes. The new results suggest that `Oumuamua is most likely a comet and not an asteroid. The discovery appears in the journal Nature.

(More at HubbleSite.com)
 
NASA Space Telescopes Provide a 3D Journey Through the Orion Nebula

low_STScI-H-p1804a-k1340x520.jpg


By combining the visible and infrared capabilities of the Hubble and Spitzer space telescopes, astronomers and visualization specialists from NASA's Universe of Learning program have created a spectacular, three-dimensional, fly-through movie of the magnificent Orion nebula, a nearby stellar nursery. Using actual scientific data along with Hollywood techniques, a team at the Space Telescope Science Institute in Baltimore, Maryland, and the Caltech/IPAC in Pasadena, California, has produced the best and most detailed multi-wavelength visualization yet of the Orion nebula. The three-minute movie allows viewers to glide through the picturesque star-forming region and experience the universe in an exciting new way.

(More at HubbleSite.com)
 
Our Solar System's First Known Interstellar Object Gets Unexpected Speed Boost

low_STScI-H-p1825a-k1340x520.png


NASA's Press Release (18-056)

Using observations from NASA’s Hubble Space Telescope and ground-based observatories, an international team of scientists have confirmed `Oumuamua (oh-MOO-ah-MOO-ah), the first known interstellar object to travel through our solar system, got an unexpected boost in speed and shift in trajectory as it passed through the inner solar system last year.

“Our high-precision measurements of ′Oumuamua’s position revealed that there was something affecting its motion other than the gravitational forces of the Sun and planets," said Marco Micheli of ESA’s (European Space Agency) Space Situational Awareness Near-Earth Object Coordination Centre in Frascati, Italy, and lead author of a paper describing the team's findings.

Analyzing the trajectory of the interstellar visitor, co-author Davide Farnocchia of the Center for Near Earth Object Studies (CNEOS) at NASA’s Jet Propulsion Laboratory (JPL) found that the speed boost was consistent with the behavior of a comet.

“This additional subtle force on `Oumuamua likely is caused by jets of gaseous material expelled from its surface,” said Farnocchia. “This same kind of outgassing affects the motion of many comets in our solar system.”

Comets normally eject large amounts of dust and gas when warmed by the Sun. But according to team scientist Olivier Hainaut of the European Southern Observatory, “there were no visible signs of outgassing from `Oumuamua, so these forces were not expected.”

The team estimates that `Oumuamua’s outgassing may have produced a very small amount of dust particles — enough to give the object a little kick in speed, but not enough to be detected.

Karen Meech, an astronomer at the University of Hawaii’s Institute of Astronomy and co-author of the study, speculated that small dust grains, present on the surface of most comets, eroded away during `Oumuamua's long journey through interstellar space.

"The more we study `Oumuamua, the more exciting it gets," Meech said. "I'm amazed at how much we have learned from a short, intense observing campaign. I can hardly wait for the next interstellar object!"

`Oumuamua, less than half a mile in length, now is farther away from our Sun than Jupiter and traveling away from the Sun at about 70,000 mph as it heads toward the outskirts of the solar system. In only another four years, it will pass Neptune’s orbit on its way back into interstellar space.

Because `Oumuamua is the first interstellar object ever observed in our solar system, researchers caution that it’s difficult to draw general conclusions about this newly-discovered class of celestial bodies. However, observations point to the possibility that other star systems regularly eject small comet-like objects and there should be more of them drifting among the stars. Future ground- and space-based surveys could detect more of these interstellar vagabonds, providing a larger sample for scientists to analyze.

NASA will host a Reddit Ask Me Anything (AMA) about the `Oumuamua observations from 4 to 6 p.m. EDT Thursday, June 28. To participate, go to:

r/IAmA

The international team of astronomers used observations from Hubble, the Canada-France-Hawaii Telescope in Hawaii, and the Gemini South Telescope and European Southern Observatory's Very Large Telescope in Chile.

The paper with the team’s findings will appear in the June 27 issue of the journal Nature.

JPL hosts CNEOS for the agency’s Near-Earth Object Observations Program, an element of the Planetary Defense Coordination Office within the agency's Science Mission Directorate. Hubble is a project of international cooperation between NASA and ESA. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages Hubble. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations.

Learn more about asteroids and near-Earth objects at:

Asteroid Watch

For more information from Hubble, go to:

Hubble Space Telescope

Felicia Chou / JoAnna Wendel
NASA Headquarters, Washington, D.C.
202-358-0257 / 202-358-1003
felicia.chou@nasa.gov / joanna.r.wendel@nasa.gov

Calla Cofield
Jet Propulsion Laboratory, Pasadena, California
818-393-1821
calla.e.cofield@jpl.nasa.gov

Donna Weaver / Ray Villard
Space Telescope Science Institute, Baltimore
410-338-4493 / 410-338-4514
dweaver@stsci.edu / villard@stsci.edu

(More at HubbleSite.com)
 
Hubble's Journey to the Center of Our Galaxy

low_keystone.png


Hubble's infrared vision pierced the dusty heart of our Milky Way galaxy to reveal more than half a million stars at its core. Except for a few blue, foreground stars, the stars are part of the Milky Way's nuclear star cluster, the most massive and densest stellar cluster in our galaxy. Located 27,000 light-years away, this region is so packed with stars, it is equivalent to having a million suns crammed into the volume of space between us and our closest stellar neighbor, Alpha Centauri, 4.3 light-years away. At the very hub of our galaxy, this star cluster surrounds the Milky Way's central supermassive black hole, which is about 4 million times the mass of our sun.

To learn even more about the Milky Way's nuclear star cluster and Hubble, join astronomers and scientists during a live Hubble Hangout discussion at 3pm EDT on Thurs., March 31 at Heart of the Milky Way Galaxy.

(More at HubbleSite.com)
 
NASA Space Telescopes Provide a 3D Journey Through the Orion Nebula

low_STScI-H-p1804a-k1340x520.jpg


By combining the visible and infrared capabilities of the Hubble and Spitzer space telescopes, astronomers and visualization specialists from NASA's Universe of Learning program have created a spectacular, three-dimensional, fly-through movie of the magnificent Orion nebula, a nearby stellar nursery. Using actual scientific data along with Hollywood techniques, a team at the Space Telescope Science Institute in Baltimore, Maryland, and the Caltech/IPAC in Pasadena, California, has produced the best and most detailed multi-wavelength visualization yet of the Orion nebula. The three-minute movie allows viewers to glide through the picturesque star-forming region and experience the universe in an exciting new way.

(More at HubbleSite.com)
 
Our Solar System's First Known Interstellar Object Gets Unexpected Speed Boost

low_STScI-H-p1825a-k1340x520.png


NASA's Press Release (18-056)

Using observations from NASA’s Hubble Space Telescope and ground-based observatories, an international team of scientists have confirmed `Oumuamua (oh-MOO-ah-MOO-ah), the first known interstellar object to travel through our solar system, got an unexpected boost in speed and shift in trajectory as it passed through the inner solar system last year.

“Our high-precision measurements of ′Oumuamua’s position revealed that there was something affecting its motion other than the gravitational forces of the Sun and planets," said Marco Micheli of ESA’s (European Space Agency) Space Situational Awareness Near-Earth Object Coordination Centre in Frascati, Italy, and lead author of a paper describing the team's findings.

Analyzing the trajectory of the interstellar visitor, co-author Davide Farnocchia of the Center for Near Earth Object Studies (CNEOS) at NASA’s Jet Propulsion Laboratory (JPL) found that the speed boost was consistent with the behavior of a comet.

“This additional subtle force on `Oumuamua likely is caused by jets of gaseous material expelled from its surface,” said Farnocchia. “This same kind of outgassing affects the motion of many comets in our solar system.”

Comets normally eject large amounts of dust and gas when warmed by the Sun. But according to team scientist Olivier Hainaut of the European Southern Observatory, “there were no visible signs of outgassing from `Oumuamua, so these forces were not expected.”

The team estimates that `Oumuamua’s outgassing may have produced a very small amount of dust particles — enough to give the object a little kick in speed, but not enough to be detected.

Karen Meech, an astronomer at the University of Hawaii’s Institute of Astronomy and co-author of the study, speculated that small dust grains, present on the surface of most comets, eroded away during `Oumuamua's long journey through interstellar space.

"The more we study `Oumuamua, the more exciting it gets," Meech said. "I'm amazed at how much we have learned from a short, intense observing campaign. I can hardly wait for the next interstellar object!"

`Oumuamua, less than half a mile in length, now is farther away from our Sun than Jupiter and traveling away from the Sun at about 70,000 mph as it heads toward the outskirts of the solar system. In only another four years, it will pass Neptune’s orbit on its way back into interstellar space.

Because `Oumuamua is the first interstellar object ever observed in our solar system, researchers caution that it’s difficult to draw general conclusions about this newly-discovered class of celestial bodies. However, observations point to the possibility that other star systems regularly eject small comet-like objects and there should be more of them drifting among the stars. Future ground- and space-based surveys could detect more of these interstellar vagabonds, providing a larger sample for scientists to analyze.

NASA will host a Reddit Ask Me Anything (AMA) about the `Oumuamua observations from 4 to 6 p.m. EDT Thursday, June 28. To participate, go to:

r/IAmA

The international team of astronomers used observations from Hubble, the Canada-France-Hawaii Telescope in Hawaii, and the Gemini South Telescope and European Southern Observatory's Very Large Telescope in Chile.

The paper with the team’s findings will appear in the June 27 issue of the journal Nature.

JPL hosts CNEOS for the agency’s Near-Earth Object Observations Program, an element of the Planetary Defense Coordination Office within the agency's Science Mission Directorate. Hubble is a project of international cooperation between NASA and ESA. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages Hubble. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations.

Learn more about asteroids and near-Earth objects at:

Asteroid Watch

For more information from Hubble, go to:

Hubble Space Telescope

Felicia Chou / JoAnna Wendel
NASA Headquarters, Washington, D.C.
202-358-0257 / 202-358-1003
felicia.chou@nasa.gov / joanna.r.wendel@nasa.gov

Calla Cofield
Jet Propulsion Laboratory, Pasadena, California
818-393-1821
calla.e.cofield@jpl.nasa.gov

Donna Weaver / Ray Villard
Space Telescope Science Institute, Baltimore
410-338-4493 / 410-338-4514
dweaver@stsci.edu / villard@stsci.edu

(More at HubbleSite.com)
 
NASA's Webb Telescope to Investigate Mysterious Brown Dwarfs

low_STScI-H-p1743a-k1340x520.png


Brown dwarfs are often described as failed stars. However, this label misrepresents the true nature of these unusual objects. They may live in the fuzzy boundary between planets and stars, but it’s that exact ambiguity that makes them so intriguing to scientists. NASA’s James Webb Space Telescope will study brown dwarfs to measure their properties and probe their origins.

(More at HubbleSite.com)
 
NASA Space Telescopes Provide a 3D Journey Through the Orion Nebula

low_STScI-H-p1804a-k1340x520.jpg


By combining the visible and infrared capabilities of the Hubble and Spitzer space telescopes, astronomers and visualization specialists from NASA's Universe of Learning program have created a spectacular, three-dimensional, fly-through movie of the magnificent Orion nebula, a nearby stellar nursery. Using actual scientific data along with Hollywood techniques, a team at the Space Telescope Science Institute in Baltimore, Maryland, and the Caltech/IPAC in Pasadena, California, has produced the best and most detailed multi-wavelength visualization yet of the Orion nebula. The three-minute movie allows viewers to glide through the picturesque star-forming region and experience the universe in an exciting new way.

(More at HubbleSite.com)
 
NASA Space Telescopes Provide a 3D Journey Through the Orion Nebula

low_STScI-H-p1804a-k1340x520.jpg


By combining the visible and infrared capabilities of the Hubble and Spitzer space telescopes, astronomers and visualization specialists from NASA's Universe of Learning program have created a spectacular, three-dimensional, fly-through movie of the magnificent Orion nebula, a nearby stellar nursery. Using actual scientific data along with Hollywood techniques, a team at the Space Telescope Science Institute in Baltimore, Maryland, and the Caltech/IPAC in Pasadena, California, has produced the best and most detailed multi-wavelength visualization yet of the Orion nebula. The three-minute movie allows viewers to glide through the picturesque star-forming region and experience the universe in an exciting new way.

(More at HubbleSite.com)
 
NASA's Hubble Space Telescope Discovers Young Star Clusters in Giant Galaxy

NASA's Hubble Space Telescope has provided intriguing new clues to cataclysmic events in the history of the peculiar galaxy NGC 1275, located approximately 200 million light-years from Earth.

(More at HubbleSite.com)
 
NASA's Webb Telescope to Investigate Mysterious Brown Dwarfs

low_STScI-H-p1743a-k1340x520.png


Brown dwarfs are often described as failed stars. However, this label misrepresents the true nature of these unusual objects. They may live in the fuzzy boundary between planets and stars, but it’s that exact ambiguity that makes them so intriguing to scientists. NASA’s James Webb Space Telescope will study brown dwarfs to measure their properties and probe their origins.

(More at HubbleSite.com)
 
NASA's James Webb Space Telescope to Reveal Secrets of the Red Planet

low_STSCI-H-p1810a-k-1340x520.png


Mars rovers and orbiters have found signs that Mars once hosted liquid water on its surface. Much of that water escaped over time. How much water was lost, and how does the water that’s left move from ice to atmosphere to soil? During its first year of operations, NASA’s James Webb Space Telescope will seek answers. Webb also will study mysterious methane plumes that hint at possible geological or even biological activity.

(More at HubbleSite.com)
 
NASA's Webb Telescope to Make a Splash in the Search for Interstellar Water

low_STSCI-J-p1814a-k-1340x520.png


Most of the water in the universe floats in vast reservoirs called molecular clouds. It coats the surface of dust grains, turning them into cosmic snowflakes. When stars and planets form, those snowflakes get swept up, delivering key ingredients for life. NASA’s James Webb Space Telescope will map water and other cosmic ices to gain new insights into these building blocks for habitable planets.

(More at HubbleSite.com)
 
NASA's Webb Telescope to Investigate Mysterious Brown Dwarfs

low_STScI-H-p1743a-k1340x520.png


Brown dwarfs are often described as failed stars. However, this label misrepresents the true nature of these unusual objects. They may live in the fuzzy boundary between planets and stars, but it’s that exact ambiguity that makes them so intriguing to scientists. NASA’s James Webb Space Telescope will study brown dwarfs to measure their properties and probe their origins.

(More at HubbleSite.com)
 
NASA's James Webb Space Telescope to Reveal Secrets of the Red Planet

low_STSCI-H-p1810a-k-1340x520.png


Mars rovers and orbiters have found signs that Mars once hosted liquid water on its surface. Much of that water escaped over time. How much water was lost, and how does the water that’s left move from ice to atmosphere to soil? During its first year of operations, NASA’s James Webb Space Telescope will seek answers. Webb also will study mysterious methane plumes that hint at possible geological or even biological activity.

(More at HubbleSite.com)
 
NASA's Webb Telescope to Make a Splash in the Search for Interstellar Water

low_STSCI-J-p1814a-k-1340x520.png


Most of the water in the universe floats in vast reservoirs called molecular clouds. It coats the surface of dust grains, turning them into cosmic snowflakes. When stars and planets form, those snowflakes get swept up, delivering key ingredients for life. NASA’s James Webb Space Telescope will map water and other cosmic ices to gain new insights into these building blocks for habitable planets.

(More at HubbleSite.com)
 
NASA's James Webb Space Telescope Could Potentially Detect the First Stars and Black Holes

low_STSCI-J-p1823a-k1340x520.png


One of the key science goals of NASA’s James Webb Space Telescope is to learn about “first light,” the moment when the first stars and galaxies lit the universe. While the first galaxies will be within Webb’s reach, individual stars shine so faintly that Webb would not be able to detect them without help. That help could come in the form of natural magnification from gravitational lensing, according to a new theoretical paper.

A cluster of galaxies can provide the needed gravitational oomph to bring distant objects into focus via lensing. Typical gravitational lensing can boost a target’s brightness by a factor of 10 to 20. But in special circumstances, the light of a faraway star could be amplified by 10,000 times or more.

If Webb monitors several galaxy clusters a couple of times a year over its lifetime, chances are good that it will detect such a magnified star, or possibly the accretion disk of a black hole from the same era. This would give astronomers a key opportunity to learn about the actual properties of the early universe and compare them to computer models.

(More at HubbleSite.com)
 
Back
Top