Space Hubble Telescope News

Hubble Sees Neptune's Mysterious Shrinking Storm

low_STSCI-H-p1808a-k-1340x520.png


Three billion miles away on the farthest known major planet in our solar system, an ominous, stinky, dark storm is shrinking out of existence as seen in pictures of Neptune taken by the Hubble Space Telescope. Immense dark storms on Neptune were first discovered in the late 1980s by the Voyager 2 spacecraft. Since then, only Hubble has tracked these elusive features that play a game of peek-a-boo over the years. Hubble found two dark storms that appeared in the mid-1990s and then vanished. This latest storm was first seen in 2015, but is now shrinking away. The dark spot material may be hydrogen sulfide, with the pungent smell of rotten eggs.

(More at HubbleSite.com)
 
Dark Matter Goes Missing in Oddball Galaxy

low_STSCI-H-p1816a-k-1340x520.png


Grand, majestic spiral galaxies like our Milky Way are hard to miss. Astronomers can spot these vast complexes because of their large, glowing centers and their signature winding arms of gas and dust, where thousands of glowing stars reside.

But some galaxies aren't so distinctive. They are big, but they have so few stars for their size that they appear very faint and diffuse. In fact, they are so diffuse that they look like giant cotton balls.

Observations by NASA's Hubble Space Telescope of one such galaxy have turned up an oddity that sets it apart from most other galaxies, even the diffuse-looking ones. It contains little, if any, dark matter, the underlying scaffolding upon which galaxies are built. Dark matter is an invisible substance that makes up the bulk of our universe and the invisible glue that holds visible matter in galaxies — stars and gas — together.

Called NGC 1052-DF2, this "ghostly" galaxy contains at most 1/400th the amount of dark matter that astronomers had expected. How it formed is a complete mystery. The galactic oddball is as large as our Milky Way, but the galaxy had escaped attention because it contains only 1/200th the number of stars as our galaxy.

Based on the colors of its globular clusters, NGC 1052-DF2 is about 10 billion years old. It resides about 65 million light-years away.

(More at HubbleSite.com)
 
NASA Awards Prestigious Postdoctoral Fellowships

low_STSCI-H-g-1822b-k1340x520.png


NASA has selected 24 new Fellows for its prestigious NASA Hubble Fellowship Program (NHFP). The program enables outstanding postdoctoral scientists to pursue independent research in any area of NASA Astrophysics, using theory, observation, experimentation, or instrument development. Each fellowship provides the awardee up to three years of support.

(More at HubbleSite.com)
 
Stellar Thief Is the Surviving Companion to a Supernova

low_STSCI-H-p1820a-k-1340x520.png


In the fading afterglow of a supernova explosion, astronomers using NASA’s Hubble Space Telescope have photographed the first image of a surviving companion to a supernova. This is the most compelling evidence that some supernovas originate in double-star systems. The companion to supernova 2001ig’s progenitor star was no innocent bystander to the explosion—it siphoned off almost all of the hydrogen from the doomed star’s stellar envelope. SN 2001ig is categorized as a Type IIb stripped-envelope supernova, which is a relatively rare type of supernova in which most, but not all, of the hydrogen is gone prior to the explosion. Perhaps as many as half of all stripped-envelope supernovas have companions—the other half lose their outer envelopes via stellar winds.

(More at HubbleSite.com)
 
Photo Release: Hubble observes energetic lightshow at Saturn’s north pole

heic1815a.jpg

Astronomers using the NASA/ESA Hubble Space telescope have taken a series of spectacular images featuring the fluttering auroras at the north pole of Saturn. The observations were taken in ultraviolet light and the resulting images provide astronomers with the most comprehensive picture so far of Saturn’s northern aurora.

(More at HubbleSite.com)
 
Improved Hubble Yardstick Gives Fresh Evidence for New Physics in the Universe

low_STSCI-H-p1812a-k-1340x520.png


The good news: Astronomers have made the most precise measurement to date of the rate at which the universe is expanding since the big bang. The possibly unsettling news: This may mean that there is something unknown about the makeup of the universe. The new numbers remain at odds with independent measurements of the early universe's expansion. Is something unpredicted going on in the depths of space?

Astronomers have come a long way since the early 1900s when they didn't have a clue that we lived in an expanding universe. Before this could be realized, astronomers needed an accurate celestial measuring stick to calculate distances to far-flung objects. At that time, faint, fuzzy patches of light that we now know as galaxies were thought by many astronomers to be objects inside our Milky Way. But, in 1913, Harvard astronomer Henrietta Leavitt discovered unique pulsating stars that maintain a consistent brightness no matter where they reside. Called Cepheid variables, these stars became reliable yardsticks for astronomers to measure cosmic distances from Earth.

A few years later, building on Leavitt's pioneering work, astronomer Edwin Hubble found a Cepheid variable star in the Andromeda nebula. By measuring the star's tremendous distance, Hubble proved that the nebula was really an entire galaxy — a separate island of billions of stars far outside our Milky Way.

He went on to find many more galaxies across space. When he used Cepheid variables to measure galaxy distances, he found that the farther away a galaxy is, the faster it appears to be receding from us. This led him to the monumental discovery that our universe is uniformly expanding in all directions. And, even the universe's age, which today we know is 13.8 billion years, could be calculated from the expansion rate.

Little would Leavitt have imagined that her Cepheid variable work would become the solid bottom rung of a cosmic distance ladder of interlinked techniques that would allow for measurements across billions of light-years.

The latest Hubble telescope results that solidify the cosmic ladder confirm a nagging discrepancy showing the universe is expanding faster now than was expected from its trajectory seen shortly after the big bang. Researchers suggest that there may be new physics at work to explain the inconsistency. One idea is that the universe contains a new high-speed subatomic particle. Another possibility is that dark energy, already known to be accelerating the cosmos, may be shoving galaxies away from each other with even greater — or growing — strength.

The Hubble study extends the number of Cepheid stars analyzed to distances of up to 10 times farther across our galaxy than previous Hubble results. The new measurements help reduce the chance that the discrepancy in the values is a coincidence to 1 in 5,000.

(More at HubbleSite.com)
 
Our Solar System’s First Known Interstellar Object Gets Unexpected Speed Boost

low_STScI-H-p1825a-k1340x520.png


NASA’s Press Release (18-056)
Using observations from NASA’s Hubble Space Telescope and ground-based observatories, an international team of scientists have confirmed `Oumuamua (oh-MOO-ah-MOO-ah), the first known interstellar object to travel through our solar system, got an unexpected boost in speed and shift in trajectory as it passed through the inner solar system last year.

"Our high-precision measurements of `Oumuamua’s position revealed that there was something affecting its motion other than the gravitational forces of the Sun and planets," said Marco Micheli of ESA’s (European Space Agency) Space Situational Awareness Near-Earth Object Coordination Centre in Frascati, Italy, and lead author of a paper describing the team's findings.

Analyzing the trajectory of the interstellar visitor, co-author Davide Farnocchia of the Center for Near Earth Object Studies (CNEOS) at NASA’s Jet Propulsion Laboratory (JPL) found that the speed boost was consistent with the behavior of a comet.

“This additional subtle force on `Oumuamua likely is caused by jets of gaseous material expelled from its surface,” said Farnocchia. “This same kind of outgassing affects the motion of many comets in our solar system.”

Comets normally eject large amounts of dust and gas when warmed by the Sun. But according to team scientist Olivier Hainaut of the European Southern Observatory, “there were no visible signs of outgassing from `Oumuamua, so these forces were not expected.”

The team estimates that `Oumuamua’s outgassing may have produced a very small amount of dust particles — enough to give the object a little kick in speed, but not enough to be detected.

Karen Meech, an astronomer at the University of Hawaii’s Institute of Astronomy and co-author of the study, speculated that small dust grains, present on the surface of most comets, eroded away during `Oumuamua's long journey through interstellar space.

"The more we study `Oumuamua, the more exciting it gets," Meech said. "I'm amazed at how much we have learned from a short, intense observing campaign. I can hardly wait for the next interstellar object!"

`Oumuamua, less than half a mile in length, now is farther away from our Sun than Jupiter and traveling away from the Sun at about 70,000 mph as it heads toward the outskirts of the solar system. In only another four years, it will pass Neptune’s orbit on its way back into interstellar space.

Because`Oumuamua is the first interstellar object ever observed in our solar system, researchers caution that it’s difficult to draw general conclusions about this newly-discovered class of celestial bodies. However, observations point to the possibility that other star systems regularly eject small comet-like objects and there should be more of them drifting among the stars. Future ground- and space-based surveys could detect more of these interstellar vagabonds, providing a larger sample for scientists to analyze.

NASA will host a Reddit Ask Me Anything (AMA) about the `Oumuamua observations from 4 to 6 p.m. EDT Thursday, June 28. To participate, go to:

r/IAmA

The international team of astronomers used observations from Hubble, the Canada-France-Hawaii Telescope in Hawaii, and the Gemini South Telescope and European Southern Observatory's Very Large Telescope in Chile.

The paper with the team’s findings will appear in the June 27 issue of the journal Nature.

JPL hosts CNEOS for the agency’s Near-Earth Object Observations Program, an element of the Planetary Defense Coordination Office within the agency's Science Mission Directorate. Hubble is a project of international cooperation between NASA and ESA. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages Hubble. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations.

Learn more about asteroids and near-Earth objects at:

Asteroid Watch

For more information from Hubble, go to:

Hubble Space Telescope

Felicia Chou / JoAnna Wendel
NASA Headquarters, Washington, D.C.
202-358-0257 / 202-358-1003
felicia.chou@nasa.gov / joanna.r.wendel@nasa.gov

Calla Cofield
Jet Propulsion Laboratory, Pasadena, California
818-393-1821
calla.e.cofield@jpl.nasa.gov

Donna Weaver / Ray Villard
Space Telescope Science Institute, Baltimore
410-338-4493 / 410-338-4514
dweaver@stsci.edu / villard@stsci.edu

(More at HubbleSite.com)
 
Retiring Hubble Visualization Expert Blended the Best of Science and Art

low_STSCI-H-p1841a-k-1340x520.png


Astronomy has always been a preeminently visual science, going back thousands of years to the early sky watchers. Hubble’s jaw-dropping views of far-flung planets, nebulas, and galaxies have redefined the universe for whole new generations. Nearly all of Hubble’s dazzling images have been prepared with the skills of Zoltan Levay, in the STScI Office of Public Outreach. Levay is retiring now to pursue his hobby of photography on a more earth-bound plane. He leaves behind a 25-year-long legacy of several thousand colorful space pictures that communicate the mystery and wonder of the universe. Levay blended traditional photographic skills with science data to yield aesthetically pleasing pictures that are both enticing and informative. He carefully balanced the objective and subjective elements of imagery to capture the essence of intrinsically wondrous celestial landscapes.

(More at HubbleSite.com)
 
Hubble Finds Extrasolar Planets Far Across Galaxy

NASA's Hubble Space Telescope has discovered 16 extrasolar planet candidates orbiting a variety of distant stars in the central region of our Milky Way galaxy.

The planet bonanza was uncovered during a Hubble survey, called the Sagittarius Window Eclipsing Extrasolar Planet Search (SWEEPS). Hubble looked farther than has ever successfully been searched for extrasolar planets. Hubble peered at 180,000 stars in the crowded central bulge of our galaxy 26,000 light-years away or one-quarter the diameter of the Milky Way's spiral disk. The results will appear in the Oct. 5 issue of the journal Nature.

(More at HubbleSite.com)
 
NASA's Hubble Celebrates 21st Anniversary with "Rose" of Galaxies

To celebrate the 21st anniversary of the Hubble Space Telescope's deployment into space, astronomers at the Space Telescope Science Institute in Baltimore, Md., pointed Hubble's eye at an especially photogenic pair of interacting galaxies called Arp 273. The larger of the spiral galaxies, known as UGC 1810, has a disk that is distorted into a rose-like shape by the gravitational tidal pull of the companion galaxy below it, known as UGC 1813. This image is a composite of Hubble Wide Field Camera 3 data taken on December 17, 2010, with three separate filters that allow a broad range of wavelengths covering the ultraviolet, blue, and red portions of the spectrum.

Hubble was launched April 24, 1990, aboard Discovery's STS-31 mission. Hubble discoveries revolutionized nearly all areas of current astronomical research from planetary science to cosmology.

(More at HubbleSite.com)
 
Our Solar System’s First Known Interstellar Object Gets Unexpected Speed Boost

low_STScI-H-p1825a-k1340x520.png


Using observations from NASA’s Hubble Space Telescope and ground-based observatories, an international team of scientists have confirmed `Oumuamua (oh-MOO-ah-MOO-ah), the first known interstellar object to travel through our solar system, got an unexpected boost in speed and shift in trajectory as it passed through the inner solar system last year.

(More at HubbleSite.com)
 
Retiring Hubble Visualization Expert Blended the Best of Science and Art

low_STSCI-H-p1841a-k-1340x520.png


Astronomy has always been a preeminently visual science, going back thousands of years to the early sky watchers. Hubble’s jaw-dropping views of far-flung planets, nebulas, and galaxies have redefined the universe for whole new generations. Nearly all of Hubble’s dazzling images have been prepared with the skills of Zoltan Levay, in the STScI Office of Public Outreach. Levay is retiring now to pursue his hobby of photography on a more earth-bound plane. He leaves behind a 25-year-long legacy of several thousand colorful space pictures that communicate the mystery and wonder of the universe. Levay blended traditional photographic skills with science data to yield aesthetically pleasing pictures that are both enticing and informative. He carefully balanced the objective and subjective elements of imagery to capture the essence of intrinsically wondrous celestial landscapes.

(More at HubbleSite.com)
 
Success in Critical Communications Tests for NASA's James Webb Space Telescope

low_STSCI-J-p1831a-k-1340x520.png


When NASA’s James Webb Space Telescope is en route to and in orbit nearly a million miles from Earth, continuous communications with its Mission Operations Center (MOC) in Baltimore will be essential. Recently, at the Space Telescope Science Institute—home of the MOC—Webb’s Flight Operations Team successfully completed two critical communications tests. The first demonstrated that from the moment Webb launches through the first six hours of flight, complex exchanges could be accomplished among the five different service providers around the world who will alternately convey command and telemetry communications. The second test showed that the MOC could successfully command the telescope.

(More at HubbleSite.com)
 
Hubble Goes Wide to Seek Out Far-Flung Galaxies

low_STSCI-H-p1839a-k-1340x520.png


The universe is a big place. The Hubble Space Telescope's views burrow deep into space and time, but cover an area a fraction the angular size of the full Moon. The challenge is that these "core samples" of the sky may not fully represent the universe at large. This dilemma for cosmologists is called cosmic variance. By expanding the survey area, such uncertainties in the structure of the universe can be reduced.

A new Hubble observing campaign, called Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO), will boldly expand the space telescope's view into regions that are adjacent to huge galaxy clusters previously photographed by NASA's Spitzer and Hubble space telescopes under a program called Frontier Fields.

The six massive clusters were used as "natural telescopes," to look for amplified images of galaxies and supernovas that are so distant and faint that they could not be photographed by Hubble without the boost of light caused by a phenomenon called gravitational lensing. The clusters' large masses, mainly composed of dark matter, magnify and distort the light coming from distant background galaxies that otherwise could not be detected. The BUFFALO program is designed to identify galaxies in their earliest stages of formation, less than 800 million years after the big bang.

(More at HubbleSite.com)
 
Photo Release: BUFFALO charges towards the earliest galaxies

heic1816a.jpg

The NASA/ESA Hubble Space Telescope has started a new mission to shed light on the evolution of the earliest galaxies in the Universe. The BUFFALO survey will observe six massive galaxy clusters and their surroundings. The first observations show the galaxy cluster Abell 370 and a host of magnified, gravitationally lensed galaxies around it.

(More at HubbleSite.com)
 
Frankly I'm fed up with hearing on the News "...to discover the secrets of the origin of the Universe...". Why do we continually bang on about it? Let's stay closer to home and get something concrete done.
 
Hubble Goes Wide to Seek Out Far-Flung Galaxies

low_STSCI-H-p1839a-k-1340x520.png


The universe is a big place. The Hubble Space Telescope's views burrow deep into space and time, but cover an area a fraction the angular size of the full Moon. The challenge is that these "core samples" of the sky may not fully represent the universe at large. This dilemma for cosmologists is called cosmic variance. By expanding the survey area, such uncertainties in the structure of the universe can be reduced.

A new Hubble observing campaign, called Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO), will boldly expand the space telescope's view into regions that are adjacent to huge galaxy clusters previously photographed by NASA's Spitzer and Hubble space telescopes under a program called Frontier Fields.

The six massive clusters were used as "natural telescopes," to look for amplified images of galaxies and supernovas that are so distant and faint that they could not be photographed by Hubble without the boost of light caused by a phenomenon called gravitational lensing. The clusters' large masses, mainly composed of dark matter, magnify and distort the light coming from distant background galaxies that otherwise could not be detected. The BUFFALO program is designed to identify galaxies in their earliest stages of formation, less than 800 million years after the big bang.

(More at HubbleSite.com)
 
Hubble Uncovers Never Before Seen Features Around a Neutron Star

low_STSCI-H-p1843a-k-1340x520.png


Imagine crushing more than 50,000 aircraft carriers into the size of a baseball. This describes neutron stars. They are among the strangest objects in the universe. Neutron stars are a case of extreme physics produced by the unforgiving force of gravity. The entire core of an exploded star has been squeezed into a solid ball of neutrons with the density of an atom’s nucleus. Neutron stars spin as fast as a blender on puree. Some spit out death-star beams of intense radiation — like interstellar lighthouses. These are called pulsars.

These beams are normally seen in X-rays, gamma-rays, and radio waves. But astronomers used Hubble's near-infrared (IR) vision to look at a nearby neutron star cataloged RX J0806.4-4123. They were surprised to see a gush of IR light coming from a region around the neutron star. That infrared light might come from a circumstellar disk 18 billion miles across. Another idea is that a wind of subatomic particles from the pulsar’s magnetic field is slamming into interstellar gas. Hubble's IR vision opens a new window into understanding how these "infernal machines" work.

(More at HubbleSite.com)
 
Hubble Uncovers Never Before Seen Features Around a Neutron Star

low_STSCI-H-p1843a-k-1340x520.png


Imagine crushing more than 50,000 aircraft carriers into the size of a baseball. This describes neutron stars. They are among the strangest objects in the universe. Neutron stars are a case of extreme physics produced by the unforgiving force of gravity. The entire core of an exploded star has been squeezed into a solid ball of neutrons with the density of an atom’s nucleus. Neutron stars spin as fast as a blender on puree. Some spit out death-star beams of intense radiation — like interstellar lighthouses. These are called pulsars.

These beams are normally seen in X-rays, gamma-rays, and radio waves. But astronomers used Hubble's near-infrared (IR) vision to look at a nearby neutron star cataloged RX J0806.4-4123. They were surprised to see a gush of IR light coming from a region around the neutron star. That infrared light might come from a circumstellar disk 18 billion miles across. Another idea is that a wind of subatomic particles from the pulsar’s magnetic field is slamming into interstellar gas. Hubble's IR vision opens a new window into understanding how these "infernal machines" work.

(More at HubbleSite.com)
 
Astronomers Release Most Complete Ultraviolet-Light Survey of Nearby Galaxies

low_STSCI-H-p1827a-k-1340x520.png


Much of the light in the universe comes from stars, and yet, star formation is still a vexing question in astronomy.

To piece together a more complete picture of star birth, astronomers have used the Hubble Space Telescope to look at star formation among galaxies in our own cosmic back yard. The survey of 50 galaxies in the local universe, called the Legacy ExtraGalactic UV Survey (LEGUS), is the sharpest, most comprehensive ultraviolet-light look at nearby star-forming galaxies.

The LEGUS survey combines new Hubble observations with archival Hubble images for star-forming spiral and dwarf galaxies, offering a valuable resource for understanding the complexities of star formation and galaxy evolution. Astronomers are releasing the star catalogs for each of the LEGUS galaxies and cluster catalogs for 30 of the galaxies, as well as images of the galaxies themselves. The catalogs provide detailed information on young, massive stars and star clusters, and how their environment affects their development.

The local universe, stretching across the gulf of space between us and the great Virgo cluster of galaxies, is ideal for study because astronomers can amass a big enough sample of galaxies, and yet, the galaxies are close enough to Earth that Hubble can resolve individual stars. The survey will also help astronomers understand galaxies in the distant universe, where rapid star formation took place.

(More at HubbleSite.com)
 
Back
Top