Space Hubble Telescope News

Our Solar System’s First Known Interstellar Object Gets Unexpected Speed Boost

low_STScI-H-p1825a-k1340x520.png


Using observations from NASA’s Hubble Space Telescope and ground-based observatories, an international team of scientists have confirmed `Oumuamua (oh-MOO-ah-MOO-ah), the first known interstellar object to travel through our solar system, got an unexpected boost in speed and shift in trajectory as it passed through the inner solar system last year.

(More at HubbleSite.com)
 
Hubble and Gaia Team Up to Fuel Cosmic Conundrum

low_STSCI-H-p1834a-k-1340x520.png


Using the powerful Hubble and Gaia space telescopes, astronomers just took a big step toward finding the answer to the Hubble constant, one of the most important and long-sought numbers in all of cosmology. This number measures the rate at which the universe is expanding since the big bang, 13.8 billion years ago. The constant is named for astronomer Edwin Hubble, who nearly a century ago discovered that the universe was uniformly expanding in all directions. Now, researchers have calculated this number with unprecedented accuracy.

Intriguingly, the new results further intensify the discrepancy between measurements for the expansion rate of the nearby universe, and those of the distant, primeval universe — before stars and galaxies even existed. Because the universe is expanding uniformly, these measurements should be the same. The so-called “tension” implies that there could be new physics underlying the foundations of the universe.

(More at HubbleSite.com)
 
Saturn and Mars Team Up to Make Their Closest Approaches to Earth in 2018

low_STSCI-H-p1829a-k-1340x520.png


As Saturn and Mars ventured close to Earth, Hubble captured their portraits in June and July 2018, respectively. The telescope photographed the planets near opposition, when the Sun, Earth and an outer planet are lined up, with Earth sitting in between the Sun and the outer planet. Around the time of opposition, a planet is at its closest distance to Earth in its orbit. Hubble viewed Saturn on June 6, when the ringed world was approximately 1.36 billion miles from Earth, as it approached a June 27 opposition. Mars was captured on July 18, at just 36.9 million miles from Earth, near its July 27 opposition. Hubble saw the planets during summertime in Saturn’s northern hemisphere and springtime in Mars’ southern hemisphere. The increase in sunlight in Saturn’s northern hemisphere heated the atmosphere and triggered a large storm that is now disintegrating in Saturn’s northern polar region. On Mars, a spring dust storm erupted in the southern hemisphere and ballooned into a global event enshrouding the entire planet.

(More at HubbleSite.com)
 
Astronomers Uncover New Clues to the Star that Wouldn't Die

low_PR1833-Eta-Car-SN-velocities.jpg


It takes more than a massive outburst to destroy the mammoth star Eta Carinae, one of the brightest known stars in the Milky Way galaxy. About 170 years ago, Eta Carinae erupted, unleashing almost as much energy as a standard supernova explosion.

Yet that powerful blast wasn’t enough to obliterate the star, and astronomers have been searching for clues to explain the outburst ever since. Although they cannot travel back to the mid-1800s to witness the actual eruption, they can watch a rebroadcast of part of the event — courtesy of some wayward light from the explosion. Rather than heading straight toward Earth, some of the light from the outburst rebounded or “echoed” off of interstellar dust, and is just now arriving at Earth. This effect is called a light echo.

The surprise is that new measurements of the 19th-century eruption, made by ground-based telescopes, reveal material expanding with record-breaking speeds of up to 20 times faster than astronomers expected. The observed velocities are more like the fastest material ejected by the blast wave in a supernova explosion, rather than the relatively slow and gentle winds expected from massive stars before they die.

Based on the new data, researchers suggest that the 1840s eruption may have been triggered by a prolonged stellar brawl among three rowdy sibling stars, which destroyed one star and left the other two in a binary system. This tussle may have culminated with a violent explosion when Eta Carinae devoured one of its two companions, rocketing more than 10 times the mass of our Sun into space. The ejected mass created gigantic bipolar lobes resembling the dumbbell shape seen in present-day images.

(More at HubbleSite.com)
 
Hubble Paints Picture of the Evolving Universe

low_STSCI-H-p1835a-b-4000x960.png


Astronomers have just assembled one of the most comprehensive portraits yet of the universe’s evolutionary history, based on a broad spectrum of observations by the Hubble Space Telescope and other space and ground-based telescopes. In particular, Hubble’s ultraviolet vision opens a new window on the evolving universe, tracking the birth of stars over the last 11 billion years back to the cosmos’ busiest star-forming period, about 3 billion years after the big bang. This photo encompasses a sea of approximately 15,000 galaxies — 12,000 of which are star-forming — widely distributed in time and space.

(More at HubbleSite.com)
 
Hubble Detects Giant 'Cannonballs' Shooting from Star

low_keystone-2016-34-a.jpg


Great balls of fire! The Hubble Space Telescope has detected superhot blobs of gas, each twice as massive as the planet Mars, being ejected near a dying star. The plasma balls are zooming so fast through space that they would travel from Earth to the moon in 30 minutes. This stellar "cannon fire" has continued once every 8.5 years for at least the past 400 years, astronomers estimate. The fireballs present a puzzle to astronomers because the ejected material could not have been shot out by the host star, called V Hydrae. The star is a bloated red giant, residing 1,200 light-years away, which has probably shed at least half of its mass into space during its death throes.

The current best explanation is that the plasma balls were launched by an unseen companion star in an elliptical orbit around the red giant. The elongated orbit carries the companion every 8.5 years to within the puffed-up atmosphere of V Hydrae, where it gobbles up material from the bloated star. This material then settles into a disk around the companion, and serves as the launching pad for blobs of plasma, which travel at roughly a half-million miles per hour. This star system could explain a dazzling variety of glowing shapes uncovered by Hubble that are seen around dying stars, called planetary nebulae, researchers say.

(More at HubbleSite.com)
 
Hubble Reveals Observable Universe Contains 10 Times More Galaxies Than Previously Thought

low_p1639-keystone.png


In Arthur C. Clarke's novel "2001: A Space Odyssey," astronaut David Bowman exclaims, "My God, it's full of stars!" before he gets pulled into an alien-built wormhole in space. When the Hubble Space Telescope made its deepest views of the universe, astronomers might have well exclaimed: "My God, it's full of galaxies!" The Hubble Ultra Deep Field, for example, revealed 10,000 galaxies of various shapes, sizes, colors, and ages, all within an area roughly one-tenth the diameter of the full moon. What's mind-blowing is that these myriad galaxies, though plentiful, may represent merely 10 percent of the universe's total galaxy population. That's according to estimates from a new study of Hubble's deep-field surveys. The study's authors came to the staggering conclusion that at least 10 times more galaxies exist in the observable universe than astronomers thought.

According to the authors, the missing 90 percent of the universe's galaxies are too faint and too far away to be detected by the current crop of telescopes, including Hubble. To uncover them, astronomers will have to wait for much larger and more powerful future telescopes. The researchers arrived at their result by painstakingly converting Hubble deep-field images into 3-D pictures so they could make accurate measurements of the number of galaxies at different epochs in the universe's history.

(More at HubbleSite.com)
 
STScI Appoints Head of Newly Created Data Science Mission Office

low_keystone-display-1644-a.png


Dr. Arfon Smith has been selected to lead the newly created Data Science Mission Office at the Space Telescope Science Institute (STScI) in Baltimore, Maryland. The Data Science Mission Head is responsible for maximizing the scientific returns from a huge archive containing astronomical observations from 17 space astronomy missions and ground-based observatories.

Since 2013, Smith has been a project scientist and program manager at GitHub, Inc., the world's largest platform for open source software. His duties included working to develop innovative strategies for sharing data and software in academia. Smith also helped to define GitHub's business strategy for public data products, and he played a key role in establishing the company's first data science and data engineering teams.

(More at HubbleSite.com)
 
A Death Star's Ghostly Glow

low_keystone-display-2016-37a.png


In writer Edgar Allan Poe's short story "The Tell-Tale Heart," a killer confesses his crime after he thinks he hears the beating of his victim's heart. The heartbeat turns out to be an illusion. Astronomers, however, discovered a real "tell-tale heart" in space, 6,500 light-years from Earth. The "heart" is the crushed core of a long-dead star, called a neutron star, which exploded as a supernova and is now still beating with rhythmic precision. Evidence of its heartbeat are rapid-fire, lighthouse-like pulses of energy from the fast-spinning neutron star. The stellar relic is embedded in the center of the Crab Nebula, the expanding, tattered remains of the doomed star.

The nebula was first identified in 1731 and named in 1844. In 1928, Edwin Hubble linked the nebula to a supernova first witnessed in the spring of 1054 A.D. Now, the eerie glow of the burned-out star reveals itself in this new Hubble Space Telescope snapshot of the heart of the Crab Nebula. The green hue, representative of the broad color range of the camera filter used, gives the nebula a Halloween theme.

(More at HubbleSite.com)
 
Dr. Laurent Pueyo Receives 2016 Outstanding Young Scientist Award

low_image-keystone-1640a.png


The Maryland Academy of Sciences has selected Dr. Laurent Pueyo of the Space Telescope Science Institute (STScI) in Baltimore, Maryland, as the recipient of the 2016 Outstanding Young Scientist award. He will receive the award in a ceremony on Nov. 16 at the Maryland Science Center, located in Baltimore's Inner Harbor.

Pueyo joined STScI in 2013 as an associate astronomer after spending three years as a Sagan Fellow at Johns Hopkins University in Baltimore. His duties at STScI include working on improving the extrasolar-planet imaging capabilities of NASA's James Webb Space Telescope, scheduled to launch in late 2018. The STScI astronomer was a member of the team, led by STScI's Remi Soummer, that discovered that three planets around the nearby star HR 8799 had been hiding in plain sight since 1998 in archival images taken by Hubble's Near Infrared Camera and Multi-Object Spectrometer.

(More at HubbleSite.com)
 
STScI Astronomers Nancy Levenson and David Soderblom Elected AAAS Fellows

low_image-keystone-1646.png


Nancy A. Levenson and David R. Soderblom of the Space Telescope Science Institute (STScI) in Baltimore, Maryland, have been named Fellows of the American Association for the Advancement of Science (AAAS). Election as an AAAS Fellow is an honor bestowed upon AAAS members by their peers.

The AAAS cited Dr. Levenson for her exemplary service and distinguished contributions to the field of astrophysics as Deputy Director of the international Gemini Observatory in La Serena, Chile. She is currently STScI's Deputy Director. Soderblom is cited by the AAAS for his distinguished work in the field of astrophysics, with contributions to understanding low-mass stars and exoplanet searches. An Astronomer at STScI since 1984, Soderblom is also a Principal Research Scientist at Johns Hopkins University in Baltimore. In honor of their efforts, Levenson, Soderblom, and the 389 other newly elected Fellows will receive an official certificate and a gold and blue (representing science and engineering, respectively) rosette pin on February 18, 2017, at the AAAS Fellows Forum during the 2017 AAAS annual meeting in Boston, Massachusetts. For more information about this announcement, visit News.

(More at HubbleSite.com)
 
Space Telescope Science Institute to Host Data from World's Largest Digital Sky Survey

low_keystone-1641-a.png


Data from the world's largest digital sky survey is being publicly released today by the Space Telescope Science Institute (STScI) in Baltimore, Maryland, in conjunction with the University of Hawaii Institute for Astronomy in Honolulu, Hawaii. Data from the Pan-STARRS1 Surveys will allow anyone to access millions of images and use the database and catalogs containing precision measurements of billions of stars and galaxies. The four years of data comprise 3 billion separate sources, including stars, galaxies, and various other objects. The immense collection contains 2 petabytes of data, which is equivalent to one billion selfies, or one hundred times the total content of Wikipedia.

(More at HubbleSite.com)
 
Festive Nebulas Light Up Milky Way Galaxy Satellite

low_STScI-H-p1642a-k1340x520.png


Two glowing nebulas in the Small Magellanic Cloud, a dwarf galaxy that is a satellite of our Milky Way galaxy, have been observed by NASA's Hubble Space Telescope. Young, brilliant stars at the center of each nebula are heating hydrogen, causing these clouds of gas and dust to glow red. The image is part of a study called Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE). Astronomers are using Hubble to probe the Milky Way satellite to understand how dust is different in galaxies that have a far lower supply of heavy elements needed to create dust.

(More at HubbleSite.com)
 
Hubble Provides Interstellar Road Map for Voyagers' Galactic Trek

low_STScI-H-p1701a-K1340X520.png


In 1977, NASA's Voyager 1 and 2 spacecraft began their pioneering journey across the solar system to visit the giant outer planets. Now, the Voyagers are hurtling through unexplored territory on their road trip beyond our solar system. Along the way, they are measuring the interstellar medium, the mysterious environment between stars that is filled with the debris from long-dead stars. NASA's Hubble Space Telescope is providing the road map, by measuring the material along the probes' trajectories as they move through space. Hubble finds a rich, complex interstellar ecology, containing multiple clouds of hydrogen, laced with other elements. Hubble data, combined with the Voyagers, have also provided new insights into how our sun travels through interstellar space.

(More at HubbleSite.com)
 
Hubble Detects 'Exocomets' Taking the Plunge into a Young Star

low_STSCI-H-p1702a-k1340x520.png


Interstellar forecast for a nearby star: Raining comets! The comets are plunging into the star HD 172555, which resides 95 light-years from Earth. The comets were not seen directly around the star. Astronomers inferred their presence when they used NASA's Hubble Space Telescope to detect gas that is likely the vaporized remnants of their icy nuclei.

The presence of these doomed comets provides circumstantial evidence for "gravitational stirring" by an unseen Jupiter-size planet, where comets deflected by the massive object's gravity are catapulted into the star. These events also provide new insights into the past and present activity of comets in our solar system. It's a mechanism where infalling comets could have transported water to Earth and the other inner planets of our solar system. HD 172555 represents the third extrasolar system where astronomers have detected doomed, wayward comets. All of these systems are young, under 40 million years old.

(More at HubbleSite.com)
 
Hubble Captures 'Shadow Play' Caused by Possible Planet

low_STScI-H-p1703a-k1340x520.png


Eerie mysteries in the universe can be betrayed by simple shadows. The wonder of a solar eclipse is produced by the moon's shadow, and over 1,000 planets around other stars have been cataloged by the shadow they cast when passing in front of their parent star. Astronomers were surprised to see a huge shadow sweeping across a disk of dust and gas encircling a nearby, young star. They have a bird's-eye view of the disk, because it is tilted face-on to Earth, and the shadow sweeps around the disk like the hands moving around a clock. But, unlike the hands of a clock, the shadow takes 16 years to make one rotation.

Hubble has 18 years' worth of observations of the star, called TW Hydrae. Therefore, astronomers could assemble a time-lapse movie of the shadow's rotation. Explaining it is another story. Astronomers think that an unseen planet in the disk is doing some heavy lifting by gravitationally pulling on material near the star and warping the inner part of the disk. The twisted, misaligned inner disk is casting its shadow across the surface of the outer disk. TW Hydrae resides 192 light-years away and is roughly 8 million years old.

(More at HubbleSite.com)
 
'Our Place In Space:' Astronomy and Art Combine in Brand New Hubble-Inspired Exhibition

low_STScI-H-p1704a-k1340x520.png


Since the dawn of civilization, we have gazed into the night sky and attempted to make sense of what we saw there, asking questions such as: Where do we come from? What is our place in the universe? And are we alone? As we ask those questions today and new technology expands our horizons further into space, our yearning for their answers only grows. Since its launch in 1990, NASA's Hubble Space Telescope has continued this quest for answers while orbiting Earth every 90 minutes. Hubble has not only made countless new astronomical discoveries, but also brought astronomy to the public eye, satisfying our curiosity, sparking our imaginations, and greatly impacting culture, society, and art.

A new traveling exhibition, "Our Place in Space" features iconic Hubble images. It presents not only a breathtaking pictorial journey through our solar system and to the edges of the known universe, but also Hubble-inspired works by selected Italian artists. By seamlessly integrating perspectives from both artists and astronomers, the exhibition will inspire visitors to think deeply about how humanity fits into the grand scheme of the universe. Before moving to other venues, the exhibition will be on display from February 1 to April 17, 2017, in the Istituto Veneto di Science, Lettere ed Arti, Palazzo Cavalli Franchetti, on the banks of the Grand Canal in Venice, Italy. For more information about the traveling exhibition and Hubble, visit: Our Place in Space to launch in Venice - Astronomy and art combine in a brand new Hubble-inspired exhibition.

(More at HubbleSite.com)
 
Dr. Margaret Meixner and Dr. Marc Postman Promoted to STScI Distinguished Astronomers

low_STSCI-H-p1705a-k1340x520.png


The Space Telescope Science Institute (STScI) in Baltimore, Maryland, has appointed Dr. Margaret Meixner and Dr. Marc Postman to the position of STScI Distinguished Astronomer. Distinguished Astronomer is the highest level of appointment on the tenure track at STScI and represents a rank commensurate with the highest level of professorial appointments at major universities.

Meixner's promotion recognizes her long-term contributions to research and service at STScI. She has led international teams to study the life cycle of dust in the Magellanic Clouds using the Hubble, Spitzer and Herschel space telescopes. Postman is being recognized for his long-term contributions to the study of the formation and evolution of galaxies and clusters of galaxies. He has led important research to determine how the environments of galaxies determine their shapes and how the most massive galaxies evolve.

(More at HubbleSite.com)
 
Hubble Witnesses Massive Comet-Like Object Pollute Atmosphere of a White Dwarf

low_STSCI-H-p1709a-k1340x520.png


Astronomers have found the best evidence yet of the remains of a comet-like object scattered around a burned-out star. They used NASA's Hubble Space Telescope to detect the debris, which has polluted the atmosphere of a compact star known as a white dwarf. The icy object, which has been ripped apart, is similar to Halley's Comet in chemical composition, but it is 100,000 times more massive and has a much higher amount of water. It is also rich in the elements essential for life, including nitrogen, carbon, oxygen, and sulfur. These findings are evidence for a belt of comet-like bodies similar to our solar system's Kuiper Belt orbiting the white dwarf. This is the first evidence of comet-like material polluting a white dwarf's atmosphere. The results also suggest the presence of unseen, surviving planets around the burned-out star.

(More at HubbleSite.com)
 
NASA Telescope Reveals Largest Batch of Earth-Size, Habitable-Zone Planets Around Single Star

low_STSCI-H-p1707a-k1340x520.png


NASA's Spitzer Space Telescope has revealed the first known system of seven Earth-size planets around a single star. Three of these planets are located in an area called the habitable zone, where liquid water is most likely to thrive on a rocky planet. The system sets a new record for the greatest number of habitable zone planets found outside our solar system. Any of these seven planets could have liquid water, the key to life as we know it. The exoplanet system is called TRAPPIST-1 and is only 40 light-years away. Following up on the Spitzer discovery, NASA's Hubble Space Telescope has initiated the screening of four of the planets, including the three inside the habitable zone. These observations aim at assessing the presence of puffy, hydrogen-dominated atmospheres, typical for gaseous worlds like Neptune, around these planets. In May 2016, the Hubble team observed the two innermost planets and found no evidence for such puffy atmospheres. This finding strengthened the case that the planets closest to the star are terrestrial in nature. Astronomers plan follow-up studies using NASA's upcoming James Webb Space Telescope, scheduled to launch in 2018. With much greater sensitivity, Webb will be able to detect the chemical fingerprints of water, methane, oxygen, ozone, and other components of a planet's atmosphere. Webb also will analyze planets' temperatures and surface pressures — key factors in assessing their habitability.

For illustrations and more information about the TRAPPIST-1 system, visit: Exoplanet Exploration: Planets Beyond our Solar System

(More at HubbleSite.com)
 
Back
Top