Space Hubble Telescope News

Hubble Racks Up 10,000 Science Papers

low_STSCI-H-p-1140a-k-1340x520.png


NASA's Hubble Space Telescope has passed another milestone in its 21 years of exploration: the 10,000th refereed science paper has been published. This makes Hubble one of the most prolific astronomical endeavors in history.

(More at HubbleSite.com)
 
Hubble Serves Up a Holiday Snow Angel

low_STSCI-H-p-1138a-k-1340x520.png


The bipolar star-forming region, called Sharpless 2-106, or S106 for short, looks like a soaring, celestial snow angel. The outstretched "wings" of the nebula record the contrasting imprint of heat and motion against the backdrop of a colder medium. Twin lobes of super-hot gas, glowing blue in this image, stretch outward from the central star. This hot gas creates the "wings" of our angel. A ring of dust and gas orbiting the star acts like a belt, cinching the expanding nebula into an "hourglass" shape.

(More at HubbleSite.com)
 
Physicist and Former Astronaut John Grunsfeld to Head NASA Science Directorate

low_STSCI-H-p-1141a-k-1340x520.png


NASA has named physicist and former astronaut John Grunsfeld as the new Associate Administrator for the Science Mission Directorate at the agency's headquarters in Washington, D.C. Grunsfeld will take the reins of the office effective January 4, 2012. He succeeds Ed Weiler, who retired from NASA on Sept. 30. Grunsfeld currently serves as the Deputy Director of the Space Telescope Science Institute in Baltimore, which manages the science program of the Hubble Space Telescope and is partner in the forthcoming James Webb Space Telescope.

(More at HubbleSite.com)
 
Distant Galaxy Bursts with Stars

low_STSCI-H-p-1142a-k-1340x520.png


One of the most distant galaxies known, called GN-108036, dates back to 750 million years after the Big Bang that created our universe. The galaxy's light took 12.9 billion years to reach us. GN-108036 was discovered and confirmed using the Subaru telescope and the W.M. Keck Observatory. After the galaxy was discovered, astronomers looked at infrared observations of it taken by NASA's Spitzer and Hubble space telescopes.

(More at HubbleSite.com)
 
Space Telescope Science Institute Announces the 2012 Hubble Fellows

low_STSCI-H-p1215a-k-1340x520.png


The Space Telescope Science Institute (STScI) announces today the selection of 17 new candidates for the Hubble Fellowship Program. This is one of the three prestigious postdoctoral fellowship programs funded by NASA. The other programs are the Sagan and the Einstein Fellowships. STScI administers the Hubble Fellowship Program for NASA.

(More at HubbleSite.com)
 
NASA's Hubble Rules Out One Alternative to Dark Energy

low_STSCI-H-p-1108a-k-1340x520.png


Astronomers using NASA's Hubble Space Telescope have ruled out an alternate theory on the nature of dark energy after recalculating the expansion rate of the universe to unprecedented accuracy. The universe appears to be expanding at an ever-increasing rate, and one explanation is that the universe is filled with a dark energy that works in the opposite way of gravity. One alternative to that hypothesis is that an enormous bubble of relatively empty space eight billion light-years across surrounds our galactic neighborhood. If we lived near the center of this void, observations of galaxies being pushed away from each other at accelerating speeds would be an illusion. This hypothesis has been invalidated because astronomers have refined their current understanding of the universe's present expansion rate to an uncertainty of just 3.3 percent. The new measurement reduces the error margin by 30 percent over Hubble's previous best measurement in 2009. The results are reported in the April 1 issue of The Astrophysical Journal.

Amongst the myriad stars in spiral galaxy NGC 5584, imaged in visible light with Hubble's Wide Field Camera 3 between January and April 2010, are pulsating stars called Cepheid variables and one recent Type Ia supernova, a special class of exploding stars. Astronomers used Cepheid variables and Type Ia supernovae as reliable distance markers to measure the universe's expansion rate. NGC 5584 lies 72 million light-years away in the constellation Virgo and was one of the eight galaxies astronomers studied to measure the universe's expansion rate. In those galaxies, astronomers analyzed more than 600 Cepheid variables, including 250 in NGC 5584. Cepheid variables pulsate at a rate matched closely by their intrinsic brightness, making them ideal for measuring distances to relatively nearby galaxies. Type Ia supernovae flare with the same brightness and are brilliant enough to be seen from relatively longer distances. Astronomers search for Type Ia supernovae in nearby galaxies containing Cepheid variables so they can compare true brightness of both types of stars. That brightness information is used to calibrate the measurement of Type Ia supernova in far-flung galaxies and calculate their distance from Earth. Once astronomers know accurate distances to galaxies near and far, they can determine the universe's expansion rate.

(More at HubbleSite.com)
 
NASA Telescopes Join Forces to Observe Unprecedented Explosion

low_STSCI-H-p-1110a-k-1340x520.png


NASA's Swift satellite, Hubble Space Telescope, and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts ever observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen such a bright, variable, high-energy, long-lasting burst before. Usually, gamma-ray bursts mark the destruction of a massive star, and flaring emission from these events never lasts more than a few hours.

On Monday, March 28, 2011, the Swift satellite's Burst Alert Telescope discovered the source in the constellation Draco when it erupted with the first in a series of powerful blasts. Swift determined a position for the explosion, which is now cataloged as gamma-ray burst (GRB) 110328A, and informed astronomers worldwide. As dozens of telescopes turned to the spot, astronomers quickly noticed a small, distant galaxy very near the Swift position. A deep image, taken by Hubble on Monday, April 4, 2011, pinpointed the source of the explosion at the center of this galaxy, which lies 3.8 billion light-years away from Earth. That same day, astronomers used NASA's Chandra X-ray Observatory to make a four-hour-long exposure of the puzzling source. The image, which locates the X-ray object 10 times more precisely than Swift, shows that the source lies at the center of the galaxy Hubble imaged.

Astronomers previously have detected stars disrupted by supermassive black holes, but none have shown the X-ray brightness and variability seen in GRB 110328A. The source has undergone numerous flares. Since Sunday, April 3, it has brightened by more than five times. Although research is ongoing, astronomers feel the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its rotational axis. A powerful blast of X-rays and gamma rays is seen if this jet is pointed in our direction.

Hubble observations of GRB 110328A's host galaxy were taken with the Wide Field Camera 3 in visible and near-infrared light. This Hubble image of the galaxy was taken in visible light. Astronomers plan additional Hubble observations to see if the galaxy's core changes brightness.

(More at HubbleSite.com)
 
NASA Telescopes Help Discover Surprisingly Young Galaxy

low_STSCI-H-p-1112a-k-1340x520.png


Astronomers have uncovered one of the youngest galaxies in the distant universe, with stars that formed 13.5 billion years ago, a mere 200 million years after the Big Bang. The finding addresses questions about when the first galaxies arose, and how the early universe evolved. NASA's Hubble Space Telescope was the first to spot the newfound galaxy. Detailed observations from the W.M. Keck Observatory on Mauna Kea in Hawaii revealed the observed light dates to when the universe was only 950 million years old; the universe formed about 13.7 billion years ago. Infrared data from both Hubble and NASA's Spitzer Space Telescope revealed the galaxy's stars are quite mature, having formed when the universe was just a toddler at 200 million years old. The galaxy's image is being magnified by the gravity of a massive cluster of galaxies (Abell 383) parked in front of it, making it appear 11 times brighter. This phenomenon is called gravitational lensing.

(More at HubbleSite.com)
 
NASA's Hubble Celebrates 21st Anniversary with "Rose" of Galaxies

low_STSCI-H-p-1111a-k-1340x520.png


To celebrate the 21st anniversary of the Hubble Space Telescope's deployment into space, astronomers at the Space Telescope Science Institute in Baltimore, Md., pointed Hubble's eye at an especially photogenic pair of interacting galaxies called Arp 273. The larger of the spiral galaxies, known as UGC 1810, has a disk that is distorted into a rose-like shape by the gravitational tidal pull of the companion galaxy below it, known as UGC 1813. This image is a composite of Hubble Wide Field Camera 3 data taken on December 17, 2010, with three separate filters that allow a broad range of wavelengths covering the ultraviolet, blue, and red portions of the spectrum.

Hubble was launched April 24, 1990, aboard Discovery's STS-31 mission. Hubble discoveries revolutionized nearly all areas of current astronomical research from planetary science to cosmology.

(More at HubbleSite.com)
 
NASA's SWIFT and Hubble Probe Asteroid Collision Debris

low_STSCI-H-p-1113a-k-1340x520.png


Late last year, astronomers noticed an asteroid named Scheila had unexpectedly brightened, and it was sporting short-lived plumes. Data from NASA's Swift satellite and Hubble Space Telescope showed these changes likely occurred after Scheila was struck by a much smaller asteroid.

This visible-light image of asteroid (596) Scheila was taken with Hubble's Wide Field Camera 3 on Dec. 27, 2010, when the asteroid was approximately 217 million miles away. The asteroid is surrounded by a C-shaped cloud, or coma, of dust particles. The asteroid body, which is approximately 70 miles across, appears star-like because it is overexposed so that the faint dust can be imaged.

(More at HubbleSite.com)
 
Galaxy NGC 4214: A Star-Formation Laboratory

low_STSCI-H-p-1114a-k-1340x520.png


The dwarf galaxy NGC 4214 is ablaze with young stars and gas clouds. Located around 10 million light-years away in the constellation of Canes Venatici (The Hunting Dogs), the galaxy's close proximity, combined with the wide variety of evolutionary stages among the stars, make it an ideal laboratory to research the triggers of star formation and evolution. This color image was taken using the Hubble Space Telescope's Wide Field Camera 3 in December 2009.

(More at HubbleSite.com)
 
Hubble Views the Star that Changed the Universe

low_STSCI-H-p-1115a-k-1340x520.png


Though the universe is filled with billions upon billions of stars, NASA's Hubble Space Telescope has been trained on a single variable star that in 1923 altered the course of modern astronomy. And, at least one famous astronomer of the time lamented that the discovery had shattered his world view. The star goes by the inauspicious name of Hubble variable number one, or V1, and resides two million light-years away in the outer regions of the neighboring Andromeda galaxy, or M31. V1 is a special class of pulsating star called a Cepheid variable that can be used to make reliable measurements of large cosmic distances. The star helped Edwin Hubble show that Andromeda lies beyond our galaxy. Prior to the discovery of V1 many astronomers, including Harlow Shapley, thought spiral nebulae, such as Andromeda, were part of our Milky Way galaxy. Others weren't so sure. In fact, Shapley and Heber Curtis held a public debate in 1920 over the nature of these nebulae. But it took Edwin Hubble's discovery just a few years later to settle the debate. Hubble sent a letter, along with a light curve of V1, to Shapley telling him of his discovery. After reading the note, Shapley reportedly told a colleague, "here is the letter that destroyed my universe." The universe became a much bigger place after Edwin Hubble's discovery.

In commemoration of this landmark observation, astronomers with the Space Telescope Science Institute's Hubble Heritage Project partnered with the American Association of Variable Star Observers (AAVSO) to study the star. AAVSO observers followed V1 for six months, producing a plot, or light curve, of the rhythmic rise and fall of the star's light. Based on this data, the Hubble Heritage team scheduled Hubble telescope time to capture Wide Field Camera 3 images of the star at its dimmest and brightest light levels. The observations are being presented on May 23 at the meeting of the American Astronomical Society in Boston, Mass. Copies of the photograph Edwin Hubble made in 1923 flew onboard space shuttle Discovery in 1990 on the mission that deployed Hubble. Two of the remaining five copies were part of space shuttle Atlantis's cargo in 2009 for NASA's fifth servicing mission to Hubble. Edwin Hubble's observations of V1 became the critical first step in uncovering a larger, grander universe. He went on to measure the distances to many galaxies beyond the Milky Way by finding Cepheid variables within them. The velocities of those galaxies, in turn, allowed him to determine that the universe is expanding. The space telescope that bears his namesake continues using Cepheids to refine the expansion rate of the universe and probe galaxies far beyond Edwin Hubble's reach.

(More at HubbleSite.com)
 
NASA's Hubble Finds Rare Blue Straggler Stars in the Milky Way's Hub

low_STSCI-H-p-1116a-k-1340x520.png


Peering deep into the star-filled, ancient hub of our Milky Way (left), NASA's Hubble Space Telescope has found a rare class of oddball stars called blue stragglers. This is the first time such objects have been detected within our galaxy's bulge. Blue stragglers are so named because they seem to be lagging behind in their rate of aging compared with nearby older stars.

The discovery is a spin-off from a seven-day-long survey conducted in 2006 called the Sagittarius Window Eclipsing Extrasolar Planet Search (SWEEPS). Hubble peered at and obtained variability information for 180,000 stars in the crowded central bulge of our galaxy, 26,000 light-years away.

(More at HubbleSite.com)
 
New Supernova Remnant Lights Up

low_STSCI-H-p-1121a-k-1340x520.png


Astronomers using NASA's Hubble Space Telescope are witnessing the unprecedented transition of a supernova to a supernova remnant, where light from an exploding star in a neighboring galaxy, the Large Magellanic Cloud, reached Earth in February 1987. Named Supernova 1987A, it was the closest supernova explosion witnessed in almost 400 years. The supernova's close proximity to Earth has allowed astronomers to study it in detail as it evolves. Now, the supernova debris, which has faded over the years, is brightening. This means that a different power source has begun to light the debris. The debris of SN 1987A is beginning to impact the surrounding ring, creating powerful shock waves that generate X-rays observed with NASA's Chandra X-ray Observatory. Those X-rays are illuminating the supernova debris and shock heating is making it glow in visible light. The results are being reported in today's issue of the journal Nature by a team including Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics (CfA), who leads a long-term study of SN 1987A with Hubble. Since its launch in 1990, the Hubble telescope has provided a continuous record of the changes in SN 1987A.

(More at HubbleSite.com)
 
Pandora's Cluster – Clash of the Titans

low_STSCI-H-p-1117a-k-1340x520.png


A team of scientists studying the galaxy cluster Abell 2744, nicknamed Pandora's Cluster, have pieced together the cluster's complex and violent history using telescopes in space and on the ground, including the Hubble Space Telescope, the European Southern Observatory's Very Large Telescope, the Japanese Subaru telescope, and NASA's Chandra X-ray Observatory.

The giant galaxy cluster appears to be the result of a simultaneous pile-up of at least four separate, smaller galaxy clusters that took place over a span of 350 million years. The galaxies in the cluster make up less than five percent of its mass. The gas (around 20 percent) is so hot that it shines only in X-rays (colored red in this image). The image is a composite of separate exposures made by Hubble Space Telescope Advanced Camera for Surveys detectors in October 2009, the VLT, and the Chandra ACIS detector. Hubble provides the central, most detailed part of the image, while the VLT, which has a wider field of view, provides the outer parts of the image. The distribution of invisible dark matter (making up around 75 percent of the cluster's mass) is colored here in blue.

(More at HubbleSite.com)
 
NASA's Hubble Makes One Millionth Science Observation

low_STSCI-H-p-1122a-k-1340x520.png


NASA's Hubble Space Telescope crossed another milestone in its 21-year space odyssey of exploration and discovery. On Monday, July 4, the Earth-orbiting observatory logged its one millionth science observation during a search for water in an exoplanet's atmosphere 1,000 light-years away. Although Hubble is best known for its stunning imagery of the cosmos, the millionth exposure is a spectroscopic measurement, where light is divided into its component colors. These color patterns can reveal the chemical composition of cosmic sources. This is an artist's concept of Hubble's millionth exposure, the extrasolar planet HAT-P-7b. It is a gas planet larger than Jupiter orbiting a star hotter than our Sun. HAT-P-7b, also known as Kepler 2b, has been studied by NASA's planet-hunting Kepler observatory after it was discovered by ground-based observations.

(More at HubbleSite.com)
 
Hubble Offers a Dazzling View of the 'Necklace' Nebula

low_STSCI-H-p-1124a-k-1340x520.png


A giant cosmic necklace glows brightly in this NASA Hubble Space Telescope image. The object, aptly named the Necklace Nebula, is a recently discovered planetary nebula, the glowing remains of an ordinary, Sun-like star. The nebula consists of a bright ring, measuring 12 trillion miles across, dotted with dense, bright knots of gas that resemble diamonds in a necklace. The knots glow brightly due to absorption of ultraviolet light from the central stars.

The Necklace Nebula is located 15,000 light-years away in the constellation Sagitta (the Arrow). In this composite image, taken on July 2, 2011, Hubble's Wide Field Camera 3 captured the glow of hydrogen (blue), oxygen (green), and nitrogen (red).

(More at HubbleSite.com)
 
Light Fantastic: Laser at Inner Harbor Beams Hubble's Heartbeat

low_STSCI-H-p-1132a-k-1340x520.png


Beginning on Sunday, September 25 an outdoor laser exhibit at the Maryland Science Center will present a unique blend of astronomy and art. Hubble spectral observations of distant galaxies will be projected onto the Maryland Science Center with an intense green laser. Educational activities will allow students to explore the world of light and color in astronomy.

For more information, visit: HubbleSite - From the Distant Past Exhibit

(More at HubbleSite.com)
 
Space Telescopes Reveal Secrets of Turbulent Black Hole

low_STSCI-H-p-1128a-k-1340x520.png


An international team of astronomers using five different telescopes has uncovered striking features around a supermassive black hole in the core of the distant galaxy Markarian 509. They found a very hot corona hovering above the black hole and cold gas "bullets" in hotter diffuse gas, speeding outward with velocities over 1 million miles per hour. This corona absorbs and reprocesses the ultraviolet light from the accretion disk encircling the black hole, energizing it and converting it into X-rays. This discovery allows astronomers to make sense of some of the observations of active galaxies that have been hard to explain so far. The heart of the campaign consisted of repeated visible, X-ray, and gamma-ray observations with ESA's XMM-Newton and INTEGRAL satellites, which monitored Markarian 509 for six weeks. This was followed by long observations with NASA's Chandra X-ray Observatory and the Hubble Space Telescope. Prior to these observations short snapshots to monitor the behavior of the source at all wavelengths were taken with NASA's Swift satellite. The combined efforts of all these instruments gave astronomers an unprecedented insight into the core of an active galaxy.

The Cosmic Origins Spectrograph aboard Hubble reveals that the coolest gas in the line of sight toward Markarian 509 has 14 different velocity components at various locations in the innermost parts of this galaxy. Hubble's data, combined with X-ray observations, show that most of the visible outflowing gas is blown off from a dusty gas disk surrounding the central region more than 15 light-years away from the black hole. This outflow consists of dense, cold blobs or gas bullets embedded in hotter diffuse gas. The international consortium responsible for this campaign consists of 26 astronomers from 21 institutes on 4 continents. The first results of this campaign will be published as a series of seven papers in the journal Astronomy and Astrophysics. More results are in preparation.

(More at HubbleSite.com)
 
Astrophysicist Adam Riess Wins the 2011 Nobel Prize in Physics

low_STSCI-H-p-1133a-k-1340x520.png


Adam Riess, an astronomer at the Space Telescope Science Institute (STScI) and Krieger-Eisenhower Professor in Physics and Astronomy at The Johns Hopkins University in Baltimore, today was awarded the 2011 Nobel Prize in Physics by the Royal Swedish Academy of Sciences. The academy recognized him for leadership in the High-z Team's 1998 discovery that the expansion rate of the universe is accelerating, a phenomenon widely attributed to a mysterious, unexplained "dark energy" filling the universe.

(More at HubbleSite.com)
 
Back
Top