Space Hubble Telescope News

NASA's Great Observatories Celebrate International Year of Astronomy

low_STSCI-H-p0928a-k-1340x520.png


A never-before-seen view of the turbulent heart of our Milky Way galaxy is being unveiled by NASA on Nov. 10. This event will commemorate the 400 years since Galileo first turned his telescope to the heavens in 1609. In celebration of this International Year of Astronomy, NASA is releasing images of the galactic center region as seen by its Great Observatories to more than 150 planetariums, museums, nature centers, libraries, and schools across the country.

(More at HubbleSite.com)
 
A Multi-Wavelength View of Radio Galaxy Hercules A

low_keystone.png


Spectacular jets powered by the gravitational energy of a supermassive black hole in the core of the elliptical galaxy Hercules A illustrate the combined imaging power of two of astronomy's cutting-edge tools, the Hubble Space Telescope's Wide Field Camera 3, and the recently upgraded Karl G. Jansky Very Large Array (VLA) radio telescope in New Mexico.

(More at HubbleSite.com)
 
Hubble Views Stellar Genesis in the Southern Pinwheel

low_keystone.png


The vibrant magentas and blues in this Hubble image of the barred spiral galaxy M83 reveal that the galaxy is ablaze with star formation. The galactic panorama unveils a tapestry of the drama of stellar birth and death. The galaxy, also known as the Southern Pinwheel, lies 15 million light-years away in the constellation Hydra.

This image is being used to support a citizen science project titled STAR DATE: M83. The primary goal is to estimate ages for approximately 3,000 star clusters. Amateur scientists will use the presence or absence of the pink hydrogen emission, the sharpness of the individual stars, and the color of the clusters to estimate ages. Participants will measure the sizes of the star clusters and any associated emission nebulae. Finally, the citizen scientists will "explore" the image, identifying a variety of objects ranging from background galaxies to supernova remnants to foreground stars. STAR DATE: M83 is a joint collaborative effort between the Space Telescope Science Institute and Zooniverse, creators of several citizen science projects including Galaxy Zoo, Planet Hunters, and the Andromeda Project (go to www.zooniverse.org to see the full list). The M83 project is scheduled to launch on Monday, January 13, 2014. People interested in exploring this remarkable image in more detail, and in directly participating in a science project, can visit Index of /.

(More at HubbleSite.com)
 
Hubble's High-Definition Panoramic View of the Andromeda Galaxy

low_keystone.png


The largest NASA Hubble Space Telescope image ever assembled, this sweeping view of a portion of the Andromeda galaxy (M31) is the sharpest large composite image ever taken of our galactic neighbor. Though the galaxy is over 2 million light-years away, the Hubble telescope is powerful enough to resolve individual stars in a 61,000-light-year-long section of the galaxy's pancake-shaped disk. It's like photographing a beach and resolving individual grains of sand. And, there are lots of stars in this sweeping view – over 100 million, with some of them in thousands of star clusters seen embedded in the disk. This ambitious photographic cartography of the Andromeda galaxy represents a new benchmark for precision studies of large spiral galaxies which dominate the universe's population of over 100 billion galaxies. Never before have astronomers been able to see individual stars over a major portion of an external spiral galaxy. Most of the stars in the universe live inside such majestic star cities, and this is the first data that reveal populations of stars in context to their home galaxy.

The panorama is the product of the Panchromatic Hubble Andromeda Treasury (PHAT) program. Images were obtained from viewing the galaxy in near-ultraviolet, visible, and near-infrared wavelengths, using the Advanced Camera for Surveys and the Wide Field Camera 3 aboard Hubble. This view shows the galaxy in its natural visible-light color, as photographed with Hubble's Advanced Camera for Surveys in red and blue filters July 2010 through October 2013.

(More at HubbleSite.com)
 
Hubble Space Telescope Celebrates 25 Years of Unveiling the Universe

low_keystone.png


NASA and ESA are celebrating the Hubble Space Telescope's silver anniversary of 25 years in space by unveiling some of nature's own fireworks – a giant cluster of about 3,000 stars called Westerlund 2. The cluster resides inside a vibrant stellar breeding ground known as Gum 29, located 20,000 light-years away in the constellation Carina. The comparatively young, 2-million-year-old star cluster contains some of our galaxy's hottest, brightest, and most massive stars. The largest stars are unleashing a torrent of ultraviolet light and hurricane-force winds that etch away the enveloping hydrogen gas cloud. This creates a fantasy celestial landscape of pillars, ridges, and valleys.

(More at HubbleSite.com)
 
Hubble Catches a Stellar Exodus in Action

low_keystone.png


Globular star clusters are isolated star cities, home to hundreds of thousands of stars. And like the fast pace of cities, there's plenty of action in these stellar metropolises. The stars are in constant motion, orbiting around the cluster's center. Past observations have shown that the heavyweight stars live in the crowded downtown, or core, and lightweight stars reside in the less populated suburbs.

But as heavyweight stars age, they rapidly lose mass, cool down, and shut off their nuclear furnaces. After the purge, only the stars' bright, super-hot cores remain, and they are called white dwarfs. This weight-loss program causes the now lighter-weight white dwarfs to be nudged out of the downtown through gravitational interactions with the heftier stars. At each encounter, the white dwarfs' orbits begin to expand outward from the cluster's packed center. Until these Hubble observations, astronomers had never seen the dynamical conveyor belt in action. The new Hubble results reveal young white dwarfs on their slow-paced 40-million-year exodus from the bustling center of the globular cluster 47 Tucanae in our Milky Way galaxy.

(More at HubbleSite.com)
 
Hubble Zooms in on Shrapnel from an Exploded Star

low_keystone.png


Not long before the dawn of recorded human history, our distant ancestors would have witnessed what appeared to be a bright new star briefly blazing in the northern sky, rivaling the glow of our moon. In fact, it was the titanic detonation of a bloated star much more massive than our sun. Now, thousands of years later, the expanding remnant of that blast can be seen as the Cygnus Loop, a donut-shaped nebula that is six times the apparent diameter of the full moon. The Hubble Space Telescope was used to zoom into a small portion of that remnant, called the Veil Nebula. Hubble resolves tangled rope-like filaments of glowing gases. Supernovae enrich space with heavier elements used in the formation of future stars and planets – and possibly life.

Learn even more about the Veil Nebula in a discussion with Hubble Heritage Team scientists during the live Hubble Hangout at 3pm EDT on Thurs., Sept. 24 at New Hubble 25th Anniversary Image Released .

(More at HubbleSite.com)
 
Hubble Sees the Force Awakening in a Newborn Star

low_keystone.png


Just about anything is possible in our remarkable universe, and it often competes with the imaginings of science fiction writers and filmmakers. Hubble's latest contribution is a striking photo of what looks like a double-bladed lightsaber straight out of the Star Wars films. In the center of the image, partially obscured by a dark, Jedi-like cloak of dust, a newborn star shoots twin jets out into space as a sort of birth announcement to the universe. Gas from a surrounding disk rains down onto the dust-obscured protostar and engorges it. The material is superheated and shoots outward from the star in opposite directions along an uncluttered escape route – the star's rotation axis. Much more energetic than a science fiction lightsaber, these narrow energetic beams are blasting across space at over 100,000 miles per hour. This celestial lightsaber does not lie in a galaxy far, far away but rather inside our home galaxy, the Milky Way.

(More at HubbleSite.com)
 
NASA's Spitzer, Hubble Find 'Twins' of Superstar Eta Carinae in Other Galaxies

low_keystone.png


Eta Carinae, the most luminous and massive stellar system located within 10,000 light-years of Earth, is best known for an enormous eruption seen in the mid-19th century that hurled an amount of material at least 10 times the sun's mass into space. Still shrouded by this expanding veil of gas and dust, Eta Carinae is the only object of its kind known in our galaxy. Now a study using archival data from NASA's Spitzer and Hubble space telescopes has found five similar objects in other galaxies for the first time.

(More at HubbleSite.com)
 
Hubble Unveils a Tapestry of Dazzling Diamond-Like Stars

low_keystone.png


Some of the Milky Way's "celebrity stars" — opulent, attention-getting, and short-lived — can be found in this Hubble Space Telescope image of the glittering star cluster called Trumpler 14. It is located 8,000 light-years away in the Carina Nebula, a huge star-formation region in our galaxy. Because the cluster is only 500,000 years old, it has one of the highest concentrations of massive, luminous stars in the entire Milky Way. Like some Hollywood celebrities, the stars will go out in a flash. Within just a few million years they will burn out and explode as supernovae. But the story's not over. The blast waves will trigger the formation of a new generation of stars inside the nebula in an ongoing cycle of star birth and death.

(More at HubbleSite.com)
 
Hubble Unveils Monster Stars

low_keystone.png


An international team of astronomers using the ultraviolet capabilities of NASA's Hubble Space Telescope has identified nine monster stars with masses over 100 times the mass of the sun in the star cluster R136. This makes for the largest sample of very massive stars identified to date. The results, which will be published in the Monthly Notices of the Royal Astronomical Society, raise many new questions about the formation of massive stars. R136 is only a few light-years across and is located in the Tarantula Nebula within the Large Magellanic Cloud, about 170,000 light-years away from Earth. The young cluster hosts many extremely massive, hot, and luminous stars whose energy is mostly radiated in the ultraviolet.

(More at HubbleSite.com)
 
Hubble Sees a Star 'Inflating' a Giant Bubble

low_keystone.png


Twenty-six candles grace NASA's Hubble Space Telescope's birthday cake this year, and now one giant space "balloon" will add to the festivities. Just in time for the 26th anniversary of Hubble's launch on April 24, 1990, the telescope has photographed an enormous, balloon-like bubble being blown into space by a super-hot, massive star. Astronomers trained the iconic telescope on this colorful feature, called the Bubble Nebula, or NGC 7635. The bubble is 7 light-years across – about one-and-a-half times the distance from our sun to its nearest stellar neighbor, Alpha Centauri. The Bubble Nebula lies 7,100 light-years from Earth in the constellation Cassiopeia.

(More at HubbleSite.com)
 
Hubble Captures Vivid Auroras in Jupiter's Atmosphere

low_keystone.png


Astronomers are using NASA's Hubble Space Telescope to study auroras — stunning light shows in a planet's atmosphere — on the poles of the largest planet in the solar system, Jupiter. The auroras were photographed during a series of Hubble Space Telescope Imaging Spectrograph far-ultraviolet-light observations taking place as NASA's Juno spacecraft approaches and enters into orbit around Jupiter. The aim of the program is to determine how Jupiter's auroras respond to changing conditions in the solar wind, a stream of charged particles emitted from the sun. Auroras are formed when charged particles in the space surrounding the planet are accelerated to high energies along the planet's magnetic field. When the particles hit the atmosphere near the magnetic poles, they cause it to glow like gases in a fluorescent light fixture. Jupiter's magnetosphere is 20,000 times stronger than Earth's. These observations will reveal how the solar system's largest and most powerful magnetosphere behaves.

The full-color disk of Jupiter in this image was separately photographed at a different time by Hubble's Outer Planet Atmospheres Legacy (OPAL) program, a long-term Hubble project that annually captures global maps of the outer planets.

(More at HubbleSite.com)
 
Hubble Captures the Beating Heart of the Crab Nebula

low_keystone.png


At the center of the Crab Nebula, located in the constellation Taurus, lies a celestial "beating heart" that is an example of extreme physics in space. The tiny object blasts out blistering pulses of radiation 30 times a second with unbelievable clock-like precision. Astronomers soon figured out that it was the crushed core of an exploded star, called a neutron star, which wildly spins like a blender on puree. The burned-out stellar core can do this without flying apart because it is 10 billion times stronger than steel. This incredible density means that the mass of 1.4 suns has been crushed into a solid ball of neutrons no bigger than the width of a large city. This Hubble image captures the region around the neutron star. It is unleashing copious amounts of energy that are pushing on the expanding cloud of debris from the supernova explosion — like an animal rattling its cage. This includes wave-like tsunamis of charged particles embedded in deadly magnetic fields.

On July 4, 1054, Chinese astronomers recorded the supernova that formed the Crab Nebula. The ultimate celestial firework, this "guest star" was visible during the daytime for 23 days, shining six times brighter than the planet Venus. The supernova was also recorded by Japanese, Arabic, and Native American stargazers. While searching for a comet that was predicted to return in 1758, French astronomer Charles Messier discovered a hazy nebula in the direction of the long-vanished supernova. He would later add it to his celestial catalog as "Messier 1." Because M1 didn't move across the sky like a comet, Messier simply ignored it other than just marking it as a "fake comet." Nearly a century later the British astronomer William Parsons sketched the nebula. Its resemblance to a crustacean led to M1's other name, the Crab Nebula. In 1928 Edwin Hubble first proposed associating the Crab Nebula to the Chinese "guest star" of 1054.

(More at HubbleSite.com)
 
The Dawn of a New Era for Supernova 1987A

low_STSCI-H-p1708a-k-1340x520.png


In February 1987, on a mountaintop in Chile, telescope operator Oscar Duhalde stood outside the observatory at Las Campanas and looked up at the clear night sky. There, in a hazy-looking patch of brightness in the sky — the Large Magellanic Cloud (LMC), a neighboring galaxy - was a bright star he hadn't noticed before.

That same night, Canadian astronomer Ian Shelton was at Las Campanas observing stars in the Large Magellanic Cloud. As Shelton was studying a photographic plate of the LMC later that night, he noticed a bright object that he initially thought was a defect in the plate. When he showed the plate to other astronomers at the observatory, he realized the object was the light from a supernova. Duhalde announced that he saw the object too in the night sky. The object turned out to be Supernova 1987A, the closest exploding star observed in 400 years. Shelton had to notify the astronomical community of his discovery. There was no Internet in 1987, so the astronomer scrambled down the mountain to the nearest town and sent a message to the International Astronomical Union's Bureau for Astronomical Telegrams, a clearing house for announcing astronomical discoveries.

Since that finding, an armada of telescopes, including the Hubble Space Telescope, has studied the supernova. Hubble wasn't even in space when SN 1987A was found. The supernova, however, was one of the first objects Hubble observed after its launch in 1990. Hubble has continued to monitor the exploded star for nearly 30 years, yielding insight into the messy aftermath of a star's violent self-destruction. Hubble has given astronomers a ring-side seat to watch the brightening of a ring around the dead star as the supernova blast wave slammed into it.

(More at HubbleSite.com)
 
Hubble Takes Close-up Portrait of Jupiter

low_STSCI-H-p1715a-k-1340x520.png


Named after the Roman king of the gods, the immense planet Jupiter is undoubtedly king of the solar system. Containing more mass than all the other planets combined, Jupiter's immense gravitational field deflects wayward comets that otherwise might slam into Earth, wreaking havoc.

This dazzling Hubble Space Telescope photo of Jupiter was taken when it was comparatively close to Earth, at a distance of 415 million miles. Hubble reveals the intricate, detailed beauty of Jupiter's clouds as arranged into bands of different latitudes, known as tropical regions. These bands are produced by air flowing in different directions at various latitudes. Lighter colored areas, called zones, are high-pressure where the atmosphere rises. Darker low-pressure regions where air falls are called belts. The planet's trademark, the Great Red Spot, is a long-lived storm roughly the diameter of Earth. Much smaller storms appear as white or brown-colored ovals. Such storms can last as little as a few hours or stretch on for centuries.

(More at HubbleSite.com)
 
A Lot of Galaxies Need Guarding in This NASA Hubble View

low_STSCI-H-p1720a-k-1340x520.png


Like the quirky characters in the upcoming film Guardians of the Galaxy Vol. 2, NASA's Hubble Space Telescope has some amazing superpowers, specifically when it comes to observing galaxies across time and space. One stunning example is galaxy cluster Abell 370, which contains a vast assortment of several hundred galaxies tied together by the mutual pull of gravity. That's a lot of galaxies to be guarding, and just in this one cluster! Photographed in a combination of visible and near-infrared light, the immense cluster is a rich mix of galaxy shapes. Entangled among the galaxies are mysterious-looking arcs of blue light. These are actually distorted images of remote galaxies behind the cluster. These far-flung galaxies are too faint for Hubble to see directly. Instead, the gravity of the cluster acts as a huge lens in space, magnifying and stretching images of background galaxies like a funhouse mirror. Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster. It is the last of six galaxy clusters imaged in the recently concluded Frontier Fields project — an ambitious, community-developed collaboration among NASA's Great Observatories and other telescopes that harnessed the power of massive galaxy clusters and probed the earliest stages of galaxy development.

(More at HubbleSite.com)
 
Observatories Combine to Crack Open the Crab Nebula

low_STSCI-H-p1721a-k-1340x520.png


In the summer of the year 1054 AD, Chinese astronomers saw a new "guest star," that appeared six times brighter than Venus. So bright in fact, it could be seen during the daytime for several months. Halfway around the world, Native Americans made pictographs of a crescent moon with the bright star nearby that some think may also have been a record of the supernova.

This "guest star" was forgotten about until 700 years later with the advent of telescopes. Astronomers saw a tentacle-like nebula in the place of the vanished star and called it the Crab Nebula. Today we know it as the expanding gaseous remnant from a star that self-detonated as a supernova, briefly shining as brightly as 400 million suns. The explosion took place 6,500 light-years away. If the blast had instead happened 50 light-years away it would have irradiated Earth, wiping out most life forms.

In the late 1960s astronomers discovered the crushed heart of the doomed star, an ultra-dense neutron star that is a dynamo of intense magnetic field and radiation energizing the nebula. Astronomers therefore need to study the Crab Nebula across a broad range of electromagnetic radiation, from X-rays to radio waves. This composite picture from five observatories captures the complexity of this tortured-looking supernova remnant.

(More at HubbleSite.com)
 
Hubble Sees Nearby Asteroids Photobombing Distant Galaxies

low_STSCI-H-p1733a-k-1340x520.png


Photobombing asteroids from our solar system have snuck their way into this deep image of the universe taken by NASA’s Hubble Space Telescope. These asteroids are right around the corner in astronomical terms, residing roughly 160 million miles from Earth. Yet they’ve horned their way into this picture of thousands of galaxies scattered across space and time at inconceivably farther distances.

(More at HubbleSite.com)
 
Improved Hubble Yardstick Gives Fresh Evidence for New Physics in the Universe

low_STSCI-H-p1812a-k-1340x520.png


The good news: Astronomers have made the most precise measurement to date of the rate at which the universe is expanding since the big bang. The possibly unsettling news: This may mean that there is something unknown about the makeup of the universe. The new numbers remain at odds with independent measurements of the early universe's expansion. Is something unpredicted going on in the depths of space?

Astronomers have come a long way since the early 1900s when they didn't have a clue that we lived in an expanding universe. Before this could be realized, astronomers needed an accurate celestial measuring stick to calculate distances to far-flung objects. At that time, faint, fuzzy patches of light that we now know as galaxies were thought by many astronomers to be objects inside our Milky Way. But, in 1913, Harvard astronomer Henrietta Leavitt discovered unique pulsating stars that maintain a consistent brightness no matter where they reside. Called Cepheid variables, these stars became reliable yardsticks for astronomers to measure cosmic distances from Earth.

A few years later, building on Leavitt's pioneering work, astronomer Edwin Hubble found a Cepheid variable star in the Andromeda nebula. By measuring the star's tremendous distance, Hubble proved that the nebula was really an entire galaxy — a separate island of billions of stars far outside our Milky Way.

He went on to find many more galaxies across space. When he used Cepheid variables to measure galaxy distances, he found that the farther away a galaxy is, the faster it appears to be receding from us. This led him to the monumental discovery that our universe is uniformly expanding in all directions. And, even the universe's age, which today we know is 13.8 billion years, could be calculated from the expansion rate.

Little would Leavitt have imagined that her Cepheid variable work would become the solid bottom rung of a cosmic distance ladder of interlinked techniques that would allow for measurements across billions of light-years.

The latest Hubble telescope results that solidify the cosmic ladder confirm a nagging discrepancy showing the universe is expanding faster now than was expected from its trajectory seen shortly after the big bang. Researchers suggest that there may be new physics at work to explain the inconsistency. One idea is that the universe contains a new high-speed subatomic particle. Another possibility is that dark energy, already known to be accelerating the cosmos, may be shoving galaxies away from each other with even greater — or growing — strength.

The Hubble study extends the number of Cepheid stars analyzed to distances of up to 10 times farther across our galaxy than previous Hubble results. The new measurements help reduce the chance that the discrepancy in the values is a coincidence to 1 in 5,000.

(More at HubbleSite.com)
 
Back
Top