Space Hubble Telescope News

Hubble Reveals Stellar Fireworks Accompanying Galaxy Collisions

The Hubble telescope has uncovered over 1,000 bright; young star clusters bursting to life in a brief, intense, brilliant "fireworks show" at the heart of a pair of colliding galaxies.

The picture on the left provides a sweeping view of the two galaxies, called the Antennae. The green shape pinpoints Hubble's view. Hubble's close-up view
provides a detailed look at the "fireworks" at the center of this wreck. The respective cores of the twin galaxies are the orange blobs, left and right of center, crisscrossed by filaments of dark dust. A wide band of chaotic dust stretches between the cores of the two galaxies. The sweeping spiral-like patterns, traced by bright blue star clusters, are the result of a firestorm of star birth that was triggered by the collision.

(More at HubbleSite.com)
 
Starry Bulges Yield Secrets to Galaxy Growth

The Hubble telescope is uncovering important new clues to a galaxy's birth and growth by peering into its heart - a bulge of millions of stars resembling a bulbous center yolk in the middle of a disk of egg white.

Astronomers have combined information from the Hubble telescope's visible- and infrared-light cameras to show the heart of four spiral galaxies peppered with ancient populations of stars. The top row of pictures, taken by a ground-based telescope, represents complete views of each galaxy. The blue boxes outline the regions observed by the Hubble telescope. The bottom row represents composite pictures from Hubble's visible- and infrared-light cameras. Astronomers combined views from both cameras to obtain the true ages of the stars surrounding each galaxy's bulge. The Hubble telescope's sharper resolution allows astronomers to study the intricate structure of a galaxy's central region.

(More at HubbleSite.com)
 
Beta Pictoris Disk Hides Giant Elliptical Ring System

The planetary dust disk around the nearby star Beta Pictoris is dynamically "ringing like a bell," say astronomers investigating Hubble telescope images. The "clapper" is the gravitational wallop of a star that passed near Beta Pictoris some 100,000 years ago. The surprising findings show that a close encounter with a neighboring star can severely disrupt the evolution and appearance of thin disks, which are the nurseries of planetary systems. Similar fly-bys of our solar system long ago may have reshuffled the comets that now populate our Oort cloud and Kuiper belt.

(More at HubbleSite.com)
 
Test Your Skills as a 'Galaxy Hunter'

Journey to the deepest regions of space and wrestle with the cosmic giants called galaxies. In "Galaxy Hunter," students can go online and use actual data from the Hubble Space Telescope to study galaxies in deep space. Produced by the formal education team at the Space Telescope Science Institute in Baltimore, Md., the interdisciplinary, Web-based lesson blends astronomy and math skills. A team of scientists, teachers, artists, and Web programmers developed the interactive lesson to bring the results of cutting-edge astronomical observations into the classroom. "Galaxy Hunter" is on the Amazing Space Website, AmazingSpace. Amazing Space is a group of Web-based, interactive activities primarily designed for classroom use, from kindergarten through twelfth grade.

(More at HubbleSite.com)
 
Odd Galaxy Couple on Space Voyage

low_STSCI-H-p1238a-k-1340x520.png


Two very different galaxies drift through space together in this image taken by NASA's Hubble Space Telescope. The peculiar galaxy pair is called Arp 116. Arp 116 is composed of a giant elliptical galaxy known as Messier 60 (or M60) and a much smaller spiral galaxy, NGC 4647. The faint bluish spiral galaxy NGC 4647 is about two-thirds of M60 in size and much lower in mass – roughly the size of our galaxy, the Milky Way.

M60 lies roughly 54 million light-years away from Earth; NGC 4647 is about 63 million light-years away. This image combines exposures from Hubble's Advanced Camera for Surveys and Wide Field and Planetary Camera 2.

(More at HubbleSite.com)
 
Hubble Goes to the eXtreme to Assemble Farthest Ever View of the Universe

low_STSCI-H-p1237a-k-1340x520.png


Like photographers assembling a portfolio of best shots, astronomers have assembled a new, improved portrait of mankind's deepest-ever view of the universe. Called the eXtreme Deep Field, or XDF, the photo was assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky at the center of the original Hubble Ultra Deep Field. The XDF is a small fraction of the angular diameter of the full Moon. The Hubble Ultra Deep Field is an image of a small area of space in the constellation Fornax, created using Hubble Space Telescope data from 2003 and 2004. By collecting faint light over many hours of observation, it revealed thousands of galaxies, both nearby and very distant, making it the deepest image of the universe ever taken at that time. The new full-color XDF image reaches much fainter galaxies and includes very deep exposures in red light from Hubble's new infrared camera, enabling new studies of the earliest galaxies in the universe. The XDF contains about 5,500 galaxies even within its smaller field of view. The faintest galaxies are one ten-billionth the brightness of what the human eye can see.

Astronomers continue studying this area of sky with Hubble. Extensive ongoing observing programs, led by Harry Teplitz and Richard Ellis at the California Institute of Technology, will allow astronomers to study the deep-field galaxies with Hubble to even greater depths in ultraviolet and infrared light prior to the launch of JWST. These new results will provide even more extraordinary views of this region of the sky and will be shared with the public in the coming months.

(More at HubbleSite.com)
 
Monster Galaxy May Have Been Stirred Up By Black-hole Mischief

low_STSCI-H-p1224a-k-1340x520.png


Astronomers using NASA's Hubble Space Telescope have obtained a remarkable new view of a whopper of an elliptical galaxy that may have been puffed up by the actions of one or more black holes in its core. The galaxy's core measures about 10,000 light-years and is the largest yet seen.

(More at HubbleSite.com)
 
NASA Great Observatories Find Candidate for Most Distant Galaxy Yet Known

low_keystone.png


By combining the power of NASA's Hubble Space Telescope, Spitzer Space Telescope, and one of nature's own natural "zoom lenses" in space, astronomers have set a new distance record for finding the farthest galaxy yet seen in the universe. The diminutive blob, which is only a tiny fraction of the size of our Milky Way galaxy, offers a peek back into a time when the universe was 3 percent of its present age of 13.7 billion years. The newly discovered galaxy, named MACS0647-JD, is observed 420 million years after the big bang. Its light has traveled 13.3 billion years to reach Earth.

This is the latest discovery from a large program that uses natural zoom lenses to reveal distant galaxies in the early universe. The Cluster Lensing And Supernova survey with Hubble (CLASH) is using massive galaxy clusters as cosmic telescopes to magnify distant galaxies behind them, an effect called gravitational lensing.

(More at HubbleSite.com)
 
Kepler Finds a Very Wobbly Planet

low_keystone.png


Imagine living on a planet with seasons so unpredictable you would hardly know what to wear: Bermuda shorts or a heavy overcoat! That's the situation on a weird world found by NASA's planet-hunting Kepler space telescope. The planet, designated Kepler-413b, is located 2,300 light-years away in the constellation Cygnus. It circles a close pair of orange and red dwarf stars every 66 days. But what makes this planet very unusual is that it wobbles, or precesses, wildly on its spin axis, much like a child's top. The planet's orbit is tilted with respect to the plane of the binary star's orbit. Over an 11-year period, the planet's orbit too would appear to wobble as it circles around the star pair. All of this complex movement leads to rapid and erratic changes in seasons.

(More at HubbleSite.com)
 
Hubble Goes High Def to Revisit the Iconic 'Pillars of Creation'

low_keystone.png


Although NASA's Hubble Space Telescope has taken many breathtaking images of the universe, one snapshot stands out from the rest: the iconic view of the so-called "Pillars of Creation." The jaw-dropping photo, taken in 1995, revealed never-before-seen details of three giant columns of cold gas bathed in the scorching ultraviolet light from a cluster of young, massive stars in a small region of the Eagle Nebula, or M16.

Though such butte-like features are common in star-forming regions, the M16 structures are by far the most photogenic and evocative. The Hubble image is so popular that it has appeared in movies and television shows, on tee-shirts and pillows, and even on a postage stamp. And now, in celebration of its 25th anniversary, Hubble has revisited the famous pillars, providing astronomers with a sharper and wider view, shown in the right-hand image. For comparison, the original 1995 Hubble image of the gaseous towers appears in the left-hand view. Streamers of gas can be seen bleeding off pillars as the intense radiation heats and evaporates it into space. Stars are being born deep inside the pillars.

(More at HubbleSite.com)
 
Hubble Space Telescope Celebrates 25 Years of Unveiling the Universe

low_keystone.png


NASA and ESA are celebrating the Hubble Space Telescope's silver anniversary of 25 years in space by unveiling some of nature's own fireworks – a giant cluster of about 3,000 stars called Westerlund 2. The cluster resides inside a vibrant stellar breeding ground known as Gum 29, located 20,000 light-years away in the constellation Carina. The comparatively young, 2-million-year-old star cluster contains some of our galaxy's hottest, brightest, and most massive stars. The largest stars are unleashing a torrent of ultraviolet light and hurricane-force winds that etch away the enveloping hydrogen gas cloud. This creates a fantasy celestial landscape of pillars, ridges, and valleys.

(More at HubbleSite.com)
 
Hubble Finds Giant Halo Around the Andromeda Galaxy

low_keystone.png


The Andromeda galaxy is our Milky Way's nearest neighbor in space. The majestic spiral of over 100 billion stars is comparable in size to our home galaxy. At a distance of 2.5 million light-years, it is so close to us the galaxy can be seen as a cigar-shaped smudge of light high in the autumn sky. But if you could see the huge bubble of hot, diffuse plasma surrounding it, it would appear 100 times the angular diameter of the full Moon! The gargantuan halo is estimated to contain half the mass of the stars in the Andromeda galaxy itself. It can be thought of as the "atmosphere" of a galaxy. Astronomers using Hubble identified the gas in Andromeda's halo by measuring how it filtered the light of distant bright background objects called quasars. It is akin to seeing the glow of a flashlight shining through a fog. This finding promises to tell astronomers more about the evolution and structure of one of the most common types of galaxies in the universe.

(More at HubbleSite.com)
 
Hubble Video Shows Shock Collision Inside Black Hole Jet

low_keystone.png


One of the trademarks of the Star Wars film episodes is the dreaded Death Star battle station that fires a beam of directed energy powerful enough to blow up planets. The real universe has such fireworks, and they are vastly more powerful than the Star Wars creation. These extragalactic jets are tearing across hundreds of light-years of space at 98 percent the speed of light. Instead of a battle station, the source of the killer beam is a supermassive black hole weighing many million or even a billion times the mass of our sun. Energy from the spinning black hole, and its titanic magnetic fields, shape a narrow jet of gas blasting out a galaxy's center. Hubble has been used over the past 25 years to photograph and rephotograph a jet blasting out the heart of the elliptical galaxy 3C 264 (also known as NGC 3862). Hubble's sharp vision reveals that the jet has a string-of-pearls structure of glowing knots of material. When these images were assembled into a time-lapse movie, they reveal – to the surprise of astronomers – a faster-moving bright knot rear-ending the bright knot in front of it. The resulting shock collision further accelerates particles that produce a focused beam of deadly radiation. The jet is moving so fast toward us it gives the illusion that it is traveling faster than the speed of light. But not to worry, the host galaxy is 260 million light-years away. We are seeing the jet as it looked before the dinosaurs appeared on Earth, and our planet was suffering a global mass extinction.

(More at HubbleSite.com)
 
Hubble Uncovers Fading Cinders of Some of Our Galaxy's Earliest Homesteaders

low_keystone.png


About 13 billion years ago, long before our sun formed, the construction of our Milky Way galaxy was just beginning. Young, mostly sun-like stars in the core, or central bulge, provided the building blocks for the galaxy's foundation. Many of these building-block stars have long since burned out, and are now just dying embers. But contained within these dead stars, called white dwarfs, is the early history of our galaxy, providing clues on how it came to be.

Finding these stellar relics, however, is a daunting task. Astronomers have had a difficult time picking out these dim objects from among the crowd of bright stars that fill the space between us and the core. Using Hubble Space Telescope images, astronomers have now conducted a "cosmic archaeological dig" of our Milky Way's heart, uncovering the blueprints of our galaxy's early construction phase. Hubble researchers have uncovered for the first time a population of ancient white dwarfs. The Hubble analysis represents the deepest, most detailed study of our galaxy's central bulge of stars.

(More at HubbleSite.com)
 
Hubble Directly Measures Rotation of Cloudy 'Super-Jupiter'

low_keystone.png


Though nearly 2,000 planets have been found around other stars, the light from only a handful of them has ever been collected by the world's most powerful telescopes. Ironically, a lot of them are detected by the shadows they cast, as they pass in front of their parent stars. Follow-up observations measure the planet's feeble, but telltale, gravitational tug on its parent star. Now, Hubble Space Telescope astronomers have been able to pick up the faint infrared glow of a giant planet located 170 light-years away from Earth. Not only is it glowing, but also rhythmically flickering as the planet spins on its axis like a top. The interpretation is that the subtle changes in the planet's brightness are due to a variegated cloud cover of comparatively bright and dark patches coming and going. These measurements have led to an estimate of how fast the planet is spinning through direct observation – a first for exoplanet astronomers. The gaseous world completes one rotation approximately every 10 hours, which, coincidentally, is the same rotation rate as Jupiter.

The planet is dubbed a "super-Jupiter" because it is four times the mass of Jupiter, the largest known planet in our solar system. Because the planet is a comparative newborn, it is still hot as it contracts under gravity. These characteristics allow for infrared observations. The planet orbits a faint brown dwarf, designated 2M1207. The dwarf is too small to shine as stars do through nuclear fusion. The dwarf is so dim and far from the planet astronomers were able to isolate the planet's glow.

(More at HubbleSite.com)
 
Mystery of the Universe's Expansion Rate Widens with New Hubble Data

low_STSCI-H-p1925a-k-1340x520.png


There is something wrong with our universe. Or, more specifically, it is outpacing all expectations for its present rate of expansion.

Something is amiss in astronomers' efforts to measure the past and predict the present, according to a discrepancy between the two main techniques for measuring the universe's expansion rate – a key to understanding its history and physical parameters.

The inconsistency is between the Hubble Space Telescope measurements of today's expansion rate of the universe (by looking at stellar milepost markers) and the expansion rate as measured by the European Space Agency's Planck satellite. Planck observes the conditions of the early universe just 380,000 years after the big bang.

For years, astronomers have been assuming this discrepancy would go away due to some instrumental or observational fluke. Instead, as Hubble astronomers continue to "tighten the bolts" on the accuracy of their measurements, the discordant values remain stubbornly at odds.

The chances of the disagreement being just a fluke have skyrocketed from 1 in 3,000 to 1 in 100,000.

Theorists must find an explanation for the disparity that could rattle ideas about the very underpinnings of the universe.

(More at HubbleSite.com)
 
Science Release: Latest Hubble Measurements Suggest Disparity in Hubble Constant Calculations is not a Fluke

heic1301a.jpg

heic1301a.jpg
Hubble’s measurements of today’s expansion rate do not match the rate that was expected based on how the Universe appeared shortly after the Big Bang over 13 billion years ago. Using new data from the NASA/ESA Hubble Space Telescope, astronomers have significantly lowered the possibility that this discrepancy is a fluke.

(More at HubbleSite.com)
 
Hubble Celebrates 29th Anniversary with a Colorful Look at the Southern Crab Nebula

low_STSCI-H-p1915a-k-1340x520.png


This Hubble image shows the results of two stellar companions in a gravitational waltz, several thousand light-years from Earth in the southern constellation Centaurus. The stellar duo, consisting of a red giant and white dwarf, are too close together to see individually in this view. But the consequences of their whirling about each other are two vast shells of gas expanding into space like a runaway hot air balloon. Both stars are embedded in a flat disk of hot material that constricts the outflowing gas so that it only escapes away above and below the stars. This apparently happens in episodes because the nebula has two distinct nested hourglass-shaped structures. The bubbles of gas and dust appear brightest at the edges, giving the illusion of crab legs. The rich colors correspond to glowing hydrogen, sulfur, nitrogen, and oxygen. This image was taken to celebrate Hubble's 29th anniversary since its launch on April 24, 1990.

(More at HubbleSite.com)
 
Hubble Views Saturn Ring-Plane Crossing

This sequence of images from the Hubble telescope documents a rare astronomical alignment: Saturn's magnificent ring system turned edge-on. This event occurs when the Earth passes through Saturn's ring plane, as it does about every 15 years.

In these pictures, Hubble can see details on Saturn as small as 450 miles (725 kilometers) across. In each image the dark band across Saturn is the ring shadow cast by the Sun, which is still slightly above the planet's ring plane. The bright dots to the left of Saturn and in the boxes to the right are some of the planet's moons. The boxes around the western portion of the rings [on the right] indicate the area in which the faint light from the rings has been enhanced through image processing to make the rings more visible.

(More at HubbleSite.com)
 
Blast from the Past: Farthest Supernova Ever Seen Sheds Light on Dark Universe

Gazing to the far reaches of space and time, NASA's Hubble Space Telescope identified the farthest stellar explosion ever seen, a supernova that erupted 10 billion years ago. By examining the glow from this dying star, astronomers have amassed more evidence that a mysterious, repulsive force is at work in the cosmos, making galaxies rush ever faster away from each other.

(More at HubbleSite.com)
 
Back
Top