Space Hubble Telescope News

Hubble Uncovers Thousands of Globular Star Clusters Scattered Among Galaxies

low_STSCI-H-p1844a-k-1340x520.png


Globular star clusters are favorite targets for amateur sky watchers. To the naked eye they appear as fuzzy-looking stars. Through a small telescope they resolve into glittering snowball-shaped islands of innumerable stars crowded together. About 150 globular star clusters orbit our Milky Way, like bees buzzing around a hive. They are the earliest homesteaders of our galaxy, containing the universe's oldest known stars.

Hubble is so powerful it can see globular star clusters 300 million light-years away. And, a lot of them. Peering into the heart of the giant Coma cluster of galaxies Hubble captured a whopping 22,426 globular star clusters. The survey found the globular clusters scattered in space among the 1,000 galaxies inside the Coma cluster. They have been orphaned from their home galaxy due to galaxy near-collisions inside the traffic-jammed galaxy cluster. Because they are so numerous in the Coma cluster, they are excellent tracers of the entire gravitational field that keeps the galaxies from flinging off into space. The gravity is a tracer of the distribution of dark matter.

(More at HubbleSite.com)
 
NASA's Webb Telescope Will Provide Census of Fledgling Stars in Stellar Nursery

low_STScI-J-p1859a-k1340x520.jpg


Billions of years ago, the young universe blazed with the brilliant light of myriad stars bursting to life. The young stars arising from this stellar "baby boom" are too far away and too faint for even the most powerful telescopes to study in detail.

Astronomers will use the upcoming NASA James Webb Space Telescope to study star birth in the nearby Small Magellanic Cloud galaxy, which contains some of the same conditions that existed in galaxies during the universe’s peak star-formation epoch. Webb’s sharp infrared vision will help researchers take a census of medium-mass stars like our Sun still wrapped in their dense, dusty cocoons in the giant stellar nursery NGC 346, located about 200,000 light-years away. This census could help astronomers develop a clearer picture of how the galaxies of long ago churned out stars so rapidly.

(More at HubbleSite.com)
 
Faint Glow Within Galaxy Clusters Illuminates Dark Matter

low_STSCI-H-p1856a-k-1340x520.png


Utilizing the powerful Hubble Frontier Fields observations of galaxy clusters, a study demonstrates that intracluster light — the light of stars orphaned in galaxy cluster mergers — aligns with dark matter, tracing its distribution more accurately than other methods. With broader use, astronomers think the technique could be a first step in exploring the nature of the unobservable, elusive dark matter that makes up the majority of the universe.

(More at HubbleSite.com)
 
Hubble Takes a Close Look at the Brightest Comet of the Year

low_STSCI-H-p1863a-k-1340x520.png


On December 13th, NASA’s Hubble Space Telescope photographed comet 46P/Wirtanen, a periodic comet that orbits the Sun once every 5.4 years. These observations were taken days before the comet’s closest approach to Earth on December 16th, when it passed just over 7 million miles from our planet. Astronomers took advantage of this unusually close approach to study the comet’s inner cloud of gas and dust, or coma, in detail. Their goal was to study how gases are released from ices in the nucleus, what the comet’s ices are composed of, and how gas in the coma is chemically altered by sunlight and solar radiation. In this image, the comet’s nucleus is hidden in the center of a fuzzy glow from the comet’s coma.

(More at HubbleSite.com)
 
Triangulum Galaxy Shows Stunning Face in Detailed Hubble Portrait

low_STSCI-H-p1901a-k-1340x520.png


NASA's Hubble Space Telescope has produced this stunningly detailed portrait of the Triangulum galaxy (M33), displaying a full spiral face aglow with the light of nearly 25 million individually resolved stars. It is the largest high-resolution mosaic image of Triangulum ever assembled, composed of 54 Hubble fields of view spanning an area more than 19,000 light-years across.

The Local Group of galaxies is dominated by the Milky Way, Andromeda, and Triangulum. As the junior member of this trio of spiral galaxies, Triangulum provides the valuable comparisons and contrasts that only a close companion can. Most notably, Triangulum's star formation is 10 times more intense than in the comparable Hubble panorama of the neighboring Andromeda galaxy. Astronomers have only begun to mine the enormous amount of data generated by these new Hubble observations, and expect they will yield important insights into the effects of such vigorous star formation.

The orderly nature of Triangulum's spiral, with dust distributed throughout, is another distinctive feature. Astronomers think that in the Local Group, Triangulum has been something of an introvert, isolated from frequent interactions with other galaxies while keeping busy producing stars along organized spiral arms. Uncovering the Triangulum galaxy’s story will provide an important point of reference in understanding how galaxies develop over time, and the diverse paths that shape what we see today.

(More at HubbleSite.com)
 
Hubble Sees Plunging Galaxy Losing Its Gas

low_STSCI-H-p1905a-k-1340x520.png


Two's company and three's a crowd. But thousands are a mosh pit. That's the case in the giant Coma cluster of more than 1,000 galaxies.

Hubble spotted a wayward spiral galaxy losing its gas as it plunges toward the center of the massive cluster and is roughed up as it plows through the intergalactic medium. Telltale evidence lies in a long, thin streamer of material that is stretching like taffy from the galaxy's core and on into intergalactic space. Gas is the lifeblood of a galaxy, fueling the birth of new stars. Once it is stripped of all of its gas, the galaxy, named D100, will enter retirement and shine only by the feeble glow of its aging, red stars.

D100 is being stripped of its gas because of the gravitational tug of a grouping of giant "bully" galaxies in the crowded cluster. Their combined gravity is pulling the beleaguered galaxy toward the cluster's center. As D100 falls toward the core, the galaxy barrels through material. This action forces gas from the galaxy.

The gas-stripping process in D100 began roughly 300 million years ago. In the massive Coma cluster this violent gas-loss process occurs in many galaxies. But D100 is unique in several ways. Its long, thin tail is its most unusual feature extending nearly 200,000 light-years. But the pencil-like structure is comparatively narrow, only 7,000 light-years wide. Thankfully, our Milky Way galaxy lives in a sparsely populated small corner of the universe, with only one other big galaxy as a companion.

(More at HubbleSite.com)
 
World's Largest Digital Sky Survey Issues Biggest Astronomical Data Release Ever

low_STScI-H-p1912a-k1340x520.png


Data from the world's largest digital sky survey is being publicly released today by the Space Telescope Science Institute (STScI) in Baltimore, Maryland, in conjunction with the University of Hawai’i Institute for Astronomy in Honolulu, Hawaii. Data from the Pan-STARRS1 Surveys will allow anyone to access millions of images and use the database and catalogs containing precision measurements of billions of stars and galaxies. This data release contains over 1.6 petabytes of data (a petabyte is one million gigabytes), making it the largest volume of astronomical information ever released. The survey data resides in the Mikulski Archive for Space Telescopes (MAST), which serves as NASA's repository for all of its optical and ultraviolet-light observations.

(More at HubbleSite.com)
 
Hubble Watches Spun-up Asteroid Coming Apart

low_STSCI-H-p1922a-k-1340x520.png


Astronomers once thought asteroids were boring, wayward space rocks that simply orbit around the Sun. These objects were dramatically presented only in science fiction movies.

But recent observations show that asteroids are anything but dull. In reality they are dynamic, active worlds that can ultimately disintegrate due to the long-term subtle effects of sunlight, which can slowly spin them up until they begin to shed material.

Several telescopes, including NASA's Hubble Space Telescope, have caught the gradual self-destruction of the asteroid (6478) Gault. Images from Hubble show two narrow, comet-like tails of dusty debris streaming from the diminutive asteroid.

For Gault, a mass of rubble a few miles across, mere sunlight set the stage for its gradual demise. The force of sunlight, in concert with Gault's own asymmetrical shape, speeded up the asteroid's rotation over a period of more than 100 million years. The estimated spin-up rate is 1 second every 10,000 years.

Today, the asteroid is rotating once every two hours, a speed so fast that it can no longer hold its surface material. The slightest disturbance — perhaps the impact of a pebble, or just a failure of the stressed material — may have set off a collapse. The dust left the asteroid's surface in gentle, short bursts, perhaps due to landslides lasting anywhere from a few hours to a few days. The particles are drifting away from Gault's surface at the speed of a strolling human. The gentle process is like scattering flour into the air, where wind — or sunlight, in the case of Gault — stretches the debris into a long streamer.

Astronomers will monitor the asteroid for future events. About 800,000 known asteroids reside between Mars and Jupiter, and they may fly apart at the rate of roughly one per year.

(More at HubbleSite.com)
 
NASA Recognizes HST Guide Star Catalog Developers

low_STSCI-H-p-9307a-k1340x520.png


Citing "teamwork and dedication in the development of the world's largest star catalog to be used in pointing the Hubble Space Telescope (HST)", NASA has given its Public Service Group Achievement Award to The Guide Star Catalog Group at Space Telescope Science Institute (STScI). Dr. Barry Lasker, Chief of the Catalogs and Surveys Branch, accepted this award on behalf of the group in a ceremony at Goddard Space Flight Center on March 30.

(More at HubbleSite.com)
 
STScI Preparing a Desktop Universe For Astronomers

low_STSCI-H-p-9314a-k1340x520.png


Astronomers at the Space Telescope Science Institute (STScI) in Baltimore, Maryland report that their ambitious program to make a digitized survey of the entire sky available to astronomers around the world will debut by the end of this year. At that time, STScI plans to have the survey of the southern sky digitally compressed and stored on a set of 60 CD-ROMs (compact disk read-only memory) which is a widely used computer media.

(More at HubbleSite.com)
 
Hubble Finds Many Bright Clouds on Uranus

low_STSCI-H-p-9835-k1340x520.png


A Hubble telescope infrared view of Uranus reveals that the planet is surrounded by its four major rings and by 10 of its 17 known satellites.

Hubble recently found about 20 clouds - nearly as many clouds on Uranus as the previous total in the history of modern observations. The orange-colored clouds near the prominent bright band circle the planet at more than 300 mph (500 km/h). One of the clouds on the right-hand side is brighter than any other cloud ever seen on Uranus.

(More at HubbleSite.com)
 
Hubble Hunts Down Binary Objects at the Fringe of Our Solar System

low_STSCI-H-p0204a-k-1340x520.png


The Hubble Space Telescope is hot on the trail of a puzzling new class of solar system object that might be called a Pluto "mini-me." Together, these objects are 5,000 times less massive than Pluto and Charon. Like Pluto and Charon, these dim and fleeting objects travel in pairs in the frigid, mysterious outer realm of the solar system called the Kuiper Belt, a long-hypothesized "junkyard" of countless icy bodies left over from the solar system's formation. A total of seven binary Kuiper Belt objects have been seen so far by Hubble and ground-based observatories. Among them is a pair called 1998 WW31, which the Hubble telescope studied in detail.

(More at HubbleSite.com)
 
Farthest, Faintest Solar System Objects Found Beyond Neptune

low_STSCI-H-p0325a-k-1340x520.png


Astronomers using NASA's Hubble Space Telescope have discovered three of the faintest and smallest objects ever detected beyond Neptune. Each object is a lump of ice and rock - roughly the size of Philadelphia - orbiting beyond Neptune and Pluto, where the icy bodies may have dwelled since the formation of the solar system 4.5 billion years ago. They reside in a ring-shaped region called the Kuiper Belt, which houses a swarm of icy rocks that are leftover building blocks, or "planetesimals," from the solar system's creation. The biggest surprise of the Hubble search is that so few small Kuiper Belt members were discovered. With Hubble's exquisite resolution, Bernstein and his co-workers expected to find at least 60 Kuiper Belt members as small as 10 miles (15 km) in diameter - but only three were found. Two snapshots, taken 12 hours apart, were combined to produce this Hubble Space Telescope image of a Kuiper Belt object (named 2000 FV53) moving across the sky. Hubble's Advanced Camera for Surveys tracked the object on Jan. 26, 2003. Like all the planets, this solar-system member appears to move relative to the fixed stars and galaxies in the background. This particular object was discovered from Hawaii in March 2000 and used to help target the Hubble observations.

(More at HubbleSite.com)
 
The Slant on Saturn's Rings

low_STSCI-H-p0323a-k-1340x520.png


This is a series of images of Saturn, as seen at many different wavelengths, when the planet's rings were at their maximum tilt of 27 degrees toward Earth. Saturn experiences seasonal tilts away from and toward the Sun, much the same way Earth does. This happens over the course of its 29.5-year orbit. This means that approximately every 30 years, Earth observers can catch their best glimpse of Saturn's South Pole and the southern side of the planet's rings. Between March and April 2003, researchers took full advantage to study the gas giant at maximum tilt. They used NASA's Hubble Space Telescope to capture detailed images of Saturn's Southern Hemisphere and the southern face of its rings.

(More at HubbleSite.com)
 
Too Fast, Too Furious: A Galaxy's Fatal Plunge

low_STSCI-H-p0402a-k-1340x520.png


Trailing 200,000-light-year-long streamers of seething gas, a galaxy that was once like our Milky Way is being shredded as it plunges at 4.5 million miles per hour through the heart of a distant cluster of galaxies. In this unusually violent collision with ambient cluster gas, the galaxy is stripped down to its skeletal spiral arms as it is eviscerated of fresh hydrogen for making new stars.

(More at HubbleSite.com)
 
Supernova Shock Wave Is Producing a Spectacular New Light Show

low_STSCI-H-p0409a-k-1340x520.png


Seventeen years ago, astronomers spotted the brightest stellar explosion ever seen since the one observed by Johannes Kepler 400 years ago. Called SN 1987A, the titanic supernova explosion blazed with the power of 100,000,000 suns for several months following its discovery on Feb. 23, 1987. Although the supernova itself is a million times fainter than 17 years ago, a new light show in the space surrounding it is just beginning.

This image, taken Nov. 28, 2003 by the Advanced Camera for Surveys aboard NASA's Hubble Space Telescope, shows many bright spots along a ring of gas, like pearls on a necklace. These cosmic "pearls" are being produced as a supersonic shock wave unleashed during the explosion slams into the ring at more than a million miles per hour. The collision is heating the gas ring, causing its innermost regions to glow. Curiously, one of the bright spots on the ring [at 4 o'clock] is a star that happens to lie along the telescope's line of sight.

(More at HubbleSite.com)
 
New Clues About the Nature of Dark Energy: Einstein May Have Been Right After All

low_STSCI-H-p0412a-k-1340x520.png


The good news from NASA's Hubble Space Telescope is that Einstein was right - maybe. A strange form of energy called "dark energy" is looking a little more like the repulsive force that Einstein theorized in an attempt to balance the universe against its own gravity. Even if Einstein turns out to be wrong, the universe's dark energy probably won't destroy the universe any sooner than about 30 billion years from now, say Hubble researchers.

(More at HubbleSite.com)
 
Hubble IMAX Film Takes Viewers on Ride Through Space and Time

low_STSCI-H-p0416a-k-1340x520.png


Take a virtual ride to the outer reaches of the universe and explore 10 billion years of galactic history, from fully formed and majestic spiral galaxies to disheveled collections of stars just beginning to form.

This unforgettable cosmic journey is presented in the award-winning IMAX short film, "Hubble: Galaxies Across Space and Time," which transforms images and data from NASA's Hubble Space Telescope into a voyage that sweeps viewers across the cosmos. Using the 650-megapixel-mosaic image created by the Great Observatories Origins Deep Survey (GOODS), more than 11,000 galaxy images were extracted and assembled into an accurate 3-D model for the three-minute movie. The large-format film was created by a team of Hubble image and visualization experts in the Office of Public Outreach at the Space Telescope Science Institute (STScI) in Baltimore, Md. The film was directed by Frank Summers, an astrophysicist and science visualization specialist.

(More at HubbleSite.com)
 
Hubble Approaches the Final Frontier: The Dawn of Galaxies

low_STSCI-H-p0428a-k-1340x520.png


Detailed analyses of mankind's deepest optical view of the universe, the Hubble Ultra Deep Field (HUDF), by several expert teams have at last identified, what may turn out to be, the earliest star-forming galaxies. Astronomers are now debating whether the hottest stars in these early galaxies may have provided enough radiation to "lift a curtain" of cold, primordial hydrogen that cooled after the big bang. This is a problem that has perplexed astronomers over the past decade, and NASA's Hubble Space Telescope has at last glimpsed what could be the "end of the opening act" of galaxy formation. These faint sources illustrate how astronomers can begin to explore when the first galaxies formed and what their properties might be.

But even though Hubble has looked 95 percent of the way back to the beginning of time, astronomers agree that's not far enough.

(More at HubbleSite.com)
 
Hubble Finds that Extrasolar Planet Has a Hazy Sunset

low_STSCI-H-p0744a-k-1340x520..png


A team of astronomers, led by Frederic Pont from the Geneva University Observatory in Switzerland, has detected for the first time strong evidence of hazes in the atmosphere of a planet orbiting a distant star. The new Hubble Space Telescope observations were made as the extrasolar planet, dubbed HD 189733b, passed in front of its parent star in an eclipse. As the light from the star briefly passes through the exoplanet's atmosphere, the gases in the atmosphere stamp their unique spectral fingerprints on the starlight. Where the scientists had expected to see the fingerprints of sodium and potassium, there were none; implying that high-level hazes (with an altitude of nearly 2,000 miles) are responsible for blocking the light from these elements.

(More at HubbleSite.com)
 
Back
Top