Space Hubble Telescope News

Hubble Confirms New Dark Spot on Neptune

low_keystone.png


Pancake-shaped clouds not only appear in the children's book "Cloudy With a Chance of Meatballs," but also 3 billion miles away on the gaseous planet Neptune. When they appeared in July 2015, witnessed by amateur astronomers and the largest telescopes, scientists suspected that these clouds were bright companions to an unseen, dark vortex. The dark vortex is a high-pressure system where the flow of ambient air is perturbed and diverted upward over the vortex. This forms huge, lens-shaped clouds, that resemble clouds that sometimes form over mountains on Earth.

When NASA's Voyager 2 spacecraft flew by Neptune in 1989, astronomers were surprised to see such a gaping, dark hole at southern latitudes in the giant planet's cyan-colored atmosphere. The dark spot later disappeared. But the Hubble Space Telescope captured a new northern dark spot of comparable size in 1994. Hubble captured the appearance of a new dark spot on May 16, 2016. The spot would span the width of the continental United States.

(More at HubbleSite.com)
 
Hubble Witnesses Massive Comet-Like Object Pollute Atmosphere of a White Dwarf

low_STSCI-H-p1709a-k1340x520.png


Astronomers have found the best evidence yet of the remains of a comet-like object scattered around a burned-out star. They used NASA's Hubble Space Telescope to detect the debris, which has polluted the atmosphere of a compact star known as a white dwarf. The icy object, which has been ripped apart, is similar to Halley's Comet in chemical composition, but it is 100,000 times more massive and has a much higher amount of water. It is also rich in the elements essential for life, including nitrogen, carbon, oxygen, and sulfur. These findings are evidence for a belt of comet-like bodies similar to our solar system's Kuiper Belt orbiting the white dwarf. This is the first evidence of comet-like material polluting a white dwarf's atmosphere. The results also suggest the presence of unseen, surviving planets around the burned-out star.

(More at HubbleSite.com)
 
The 20th Anniversary of the Hubble Space Telescope's STIS Instrument

low_STSCI-H-p1706a-k1340x520.png


Twenty years ago, astronauts on the second servicing mission to the Hubble Space Telescope installed the Space Telescope Imaging Spectrograph (STIS) aboard Hubble. This pioneering instrument combines a camera with a spectrograph, which provides a "fingerprint" of a celestial object's temperature, chemical composition, density, and motion. STIS also reveals changes in the evolving universe and leads the way in the field of high-contrast imaging. The versatile instrument is sensitive to a wide range of wavelengths of light, from ultraviolet through the optical and into the near-infrared. From studying black holes, monster stars, and the intergalactic medium, to analyzing the atmospheres of worlds around other stars, STIS continues its epic mission to explore the universe.

(More at HubbleSite.com)
 
Dark Matter Goes Missing in Oddball Galaxy

low_STSCI-H-p1816a-k-1340x520.png


Grand, majestic spiral galaxies like our Milky Way are hard to miss. Astronomers can spot these vast complexes because of their large, glowing centers and their signature winding arms of gas and dust, where thousands of glowing stars reside.

But some galaxies aren't so distinctive. They are big, but they have so few stars for their size that they appear very faint and diffuse. In fact, they are so diffuse that they look like giant cotton balls.

Observations by NASA's Hubble Space Telescope of one such galaxy have turned up an oddity that sets it apart from most other galaxies, even the diffuse-looking ones. It contains little, if any, dark matter, the underlying scaffolding upon which galaxies are built. Dark matter is an invisible substance that makes up the bulk of our universe and the invisible glue that holds visible matter in galaxies — stars and gas — together.

Called NGC 1052-DF2, this "ghostly" galaxy contains at most 1/400th the amount of dark matter that astronomers had expected. How it formed is a complete mystery. The galactic oddball is as large as our Milky Way, but the galaxy had escaped attention because it contains only 1/200th the number of stars as our galaxy.

Based on the colors of its globular clusters, NGC 1052-DF2 is about 10 billion years old. It resides about 65 million light-years away.

(More at HubbleSite.com)
 
Saturn and Mars Team Up to Make Their Closest Approaches to Earth in 2018

low_STSCI-H-p1829a-k-1340x520.png


As Saturn and Mars ventured close to Earth, Hubble captured their portraits in June and July 2018, respectively. The telescope photographed the planets near opposition, when the Sun, Earth and an outer planet are lined up, with Earth sitting in between the Sun and the outer planet. Around the time of opposition, a planet is at its closest distance to Earth in its orbit. Hubble viewed Saturn on June 6, when the ringed world was approximately 1.36 billion miles from Earth, as it approached a June 27 opposition. Mars was captured on July 18, at just 36.9 million miles from Earth, near its July 27 opposition. Hubble saw the planets during summertime in Saturn’s northern hemisphere and springtime in Mars’ southern hemisphere. The increase in sunlight in Saturn’s northern hemisphere heated the atmosphere and triggered a large storm that is now disintegrating in Saturn’s northern polar region. On Mars, a spring dust storm erupted in the southern hemisphere and ballooned into a global event enshrouding the entire planet.

(More at HubbleSite.com)
 
Astronomers Find Possible Elusive Star Behind Supernova

low_STScI-H-p1847a_k1340x520.png


The explosive end to a massive star's life is one of the most powerful blasts in the universe. The material expelled by the violent stellar death enriches our galaxy with heavier elements, the building blocks of new stars and even planetary systems. Astronomers have diligently searched for the doomed progenitor stars in pre-explosion images. Studying these stars could help them in their quest to better understand stellar evolution.

Their quest has turned up a few pre-supernova stars. But the doomed stars for one class of supernova have eluded discovery: the hefty stars that explode as Type Ic supernovas. These stars, weighing more than 30 times our Sun's mass, lose their hydrogen and helium layers before their cataclysmic death. Researchers thought they should be easy to find because they are big and bright. However, they have come up empty. Finally, in 2017, astronomers got lucky. A nearby star ended its life as a Type Ic supernova. Two teams of researchers pored through the archive of Hubble images to uncover the putative precursor star in pre-explosion photos taken in 2007. The supernova, catalogued as SN 2017ein, appeared near the center of the nearby spiral galaxy NGC 3938, located roughly 65 million light-years away.

An analysis of the candidate star's colors shows that it is blue and extremely hot. Based on that assessment, both teams suggest two possibilities for the source's identity. The progenitor could be a single star between 45 and 55 times more massive than our Sun. Another idea is that it could have been a binary-star system in which one of the stars weighs between 60 and 80 times our Sun's mass and the other roughly 48 solar masses. In this latter scenario, the stars are orbiting closely and interact with each other. The more massive star is stripped of its hydrogen and helium layers by the close companion, and eventually explodes as a supernova.

(More at HubbleSite.com)
 
NASA's Hubble Helps Astronomers Uncover the Brightest Quasar in the Early Universe

low_STSCI-H-p1903a-k-1340x520.png


Less than a billion years after the big bang, a monster black hole began devouring anything within its gravitational grasp. This triggered a firestorm of star formation around the black hole. A galaxy was being born. A blowtorch of energy, equivalent to the light from 600 trillion Suns, blazed across the universe. Now, 12.8 billion years later, the Hubble Space Telescope captured the beacon from this event. But Hubble astronomers needed help to spot it. The gravitational warping of space by a comparatively nearby intervening galaxy greatly amplified and distorted the quasar's light, making it the brightest such object seen in the early universe. It offers a rare opportunity to study a zoomed-in image of how supermassive black holes accompanied star formation in the very early universe and influenced the assembly of galaxies.

(More at HubbleSite.com)
 
Thackeray's Globules in IC 2944

low_STSCI-H-p0201a-k-1340x520.png


Strangely glowing dark clouds float serenely in this remarkable and beautiful image taken with the Hubble Space Telescope. These dense, opaque dust clouds - known as "globules" - are silhouetted against nearby bright stars in the busy star-forming region, IC 2944. Astronomer A.D. Thackeray first spied the globules in IC 2944 in 1950. Globules like these have been known since Dutch-American astronomer Bart Bok first drew attention to such objects in 1947. But astronomers still know very little about their origin and nature, except that they are generally associated with areas of star formation, called "HII regions" due to the presence of hydrogen gas. IC 2944 is filled with gas and dust that is illuminated and heated by a loose cluster of massive stars. These stars are much hotter and much more massive than our Sun.

(More at HubbleSite.com)
 
Stellar 'Fireworks Finale' Came First in the Young Universe

low_STSCI-H-p0202a-k-1340x520.png


The deepest views of the cosmos from the Hubble Space Telescope yield clues that the very first stars may have burst into the universe as brilliantly and spectacularly as a fireworks finale. Except in this case, the finale came first, long before Earth, the Sun and the Milky Way Galaxy formed. Studies of Hubble's deepest views of the heavens lead to the preliminary conclusion that the universe made a significant portion of its stars in a torrential firestorm of star birth, which abruptly lit up the pitch-dark heavens just a few hundred million years after the "big bang," the tremendous explosion that created the cosmos. Though stars continue to be born today in galaxies, the star birth rate could be a trickle compared to the predicted gusher of stars in those opulent early years.

(More at HubbleSite.com)
 
Hubble Hunts Down Binary Objects at the Fringe of Our Solar System

low_STSCI-H-p0204a-k-1340x520.png


The Hubble Space Telescope is hot on the trail of a puzzling new class of solar system object that might be called a Pluto "mini-me." Together, these objects are 5,000 times less massive than Pluto and Charon. Like Pluto and Charon, these dim and fleeting objects travel in pairs in the frigid, mysterious outer realm of the solar system called the Kuiper Belt, a long-hypothesized "junkyard" of countless icy bodies left over from the solar system's formation. A total of seven binary Kuiper Belt objects have been seen so far by Hubble and ground-based observatories. Among them is a pair called 1998 WW31, which the Hubble telescope studied in detail.

(More at HubbleSite.com)
 
Hubble Uncovers Oldest "Clocks" in Space to Read Age of Universe

low_STSCI-H-p0210a-k-1340x520.png


Pushing the limits of its powerful vision, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy. These extremely old, dim stars provide a completely independent reading of the universe's age without relying on measurements of the universe's expansion. The ancient white dwarf stars, as seen by Hubble, turn out to be 12 to 13 billion years old. Because earlier Hubble observations show that the first stars formed less than 1 billion years after the universe's birth in the big bang, finding the oldest stars puts astronomers well within arm's reach of calculating the absolute age of the universe.

(More at HubbleSite.com)
 
A Wheel within a Wheel

low_STSCI-H-p0221a-k-1340x520.png


A nearly perfect ring of hot, blue stars pinwheels about the yellow nucleus of an unusual galaxy known as Hoag's Object. This image from NASA's Hubble Space Telescope captures a face-on view of the galaxy's ring of stars, revealing more detail than any existing photo of this object. The entire galaxy is about 120,000 light-years wide, which is slightly larger than our Milky Way Galaxy. The blue ring, which is dominated by clusters of young, massive stars, contrasts sharply with the yellow nucleus of mostly older stars. What appears to be a "gap" separating the two stellar populations may actually contain some star clusters that are almost too faint to see. Curiously, an object that bears an uncanny resemblance to Hoag's Object can be seen in the gap at the one o'clock position. The object is probably a background ring galaxy.

(More at HubbleSite.com)
 
Hubble Discovers Black Holes in Unexpected Places

low_STSCI-H-p0218a-k-1340x520.png


Medium-size black holes actually do exist, according to the latest findings from NASA's Hubble Space Telescope, but scientists had to look in some unexpected places to find them. The previously undiscovered black holes provide an important link that sheds light on the way in which black holes grow. Even more odd, these new black holes were found in the cores of glittering, "beehive" swarms of stars called globular star clusters, which orbit our Milky Way and other galaxies. The black hole in globular cluster M15
is 4,000 times more massive than our Sun. G1
, a much larger globular cluster, harbors a heftier black hole, about 20,000 times more massive than our Sun.

(More at HubbleSite.com)
 
Hubble Spots an Icy World Far Beyond Pluto

low_STSCI-H-p0217a-k-1340x520.png


NASA's Hubble Space Telescope has measured the largest object discovered in the solar system since the discovery of Pluto 72 years ago. Approximately half the size of Pluto, the icy world is called "Quaoar" (pronounced kwa-whar). Quaoar is about 4 billion miles away, more than a billion miles farther than Pluto. Like Pluto, Quaoar dwells in the Kuiper belt, an icy belt of comet-like bodies extending 7 billion miles beyond Neptune's orbit.

(More at HubbleSite.com)
 
Hubble Makes Precise Measure of Extrasolar World's True Mass

low_STSCI-H-p0227a-k-1340x520.png


An international team of astronomers used the Hubble Space Telescope to help make a precise measurement of the mass of a planet outside our solar system. The Hubble results show that the planet is 1.89 to 2.4 times as massive as Jupiter, our solar system's largest orbiting body. Previous estimates, about which there are some uncertainties, place the planet's mass at a much wider range: between 1.9 and 100 times that of Jupiter's. The planet, called Gliese 876b, orbits the star Gliese 876. It is only the second planet outside our solar system for which astronomers have determined a precise mass.

(More at HubbleSite.com)
 
Too Close for Comfort: Hubble Discovers an Evaporating Planet

low_STSCI-H-p0308a-k-1340x520.png


Astronomers using NASA's Hubble Space Telescope have observed for the first time the atmosphere of a planet beyond our solar system evaporating into space. Most of the planet may eventually disappear, leaving only a dense core. The evaporating planet is a member of a type of planet called a "hot Jupiter," a giant gaseous planet that orbits very closely around its parent star, drawn to it like a moth to a flame. The scorched planet, called HD 209458b, orbits only 4 million miles (7 million kilometers) from its yellow, Sun-like star. The planet circles the parent star in a tight 3.5-day orbit. The Hubble observations reveal a hot and bloated hydrogen atmosphere, which is evaporating off the planet. This huge envelope of hydrogen resembles a comet with a tail trailing behind the planet.

(More at HubbleSite.com)
 
Hubble Watches Light from Mysterious Erupting Star Reverberate Through Space

low_STSCI-H-p0310a-k-1340x520.png


In January 2002, a dull star in an obscure constellation suddenly became 600,000 times more luminous than our Sun, temporarily making it the brightest star in our Milky Way galaxy. The mysterious star, called V838 Monocerotis, has long since faded back to obscurity. But observations by NASA's Hubble Space Telescope of a phenomenon called a "light echo" around the star have uncovered remarkable new features. These details promise to provide astronomers with a CAT-scan-like probe of the three-dimensional structure of shells of dust surrounding an aging star.

(More at HubbleSite.com)
 
Rainbow Image of a Dusty Star

low_STSCI-H-p0309a-k-1340x520.png


Resembling a rippling pool illuminated by underwater lights, the Egg Nebula offers astronomers a special look at the normally invisible dust shells swaddling an aging star. These dust layers, extending over one-tenth of a light-year from the star, have an onionskin structure that forms concentric rings around the star. A thicker dust belt, running almost vertically through the image, blocks off light from the central star. Twin beams of light radiate from the hidden star and illuminate the pitch-black dust, like a flashlight shining in a smoky room.

(More at HubbleSite.com)
 
The Secret Lives of Galaxies Unveiled in Deep Survey

low_STSCI-H-p0318a-k-1340x520.png


Two of NASA's Great Observatories, bolstered by the largest ground-based telescopes around the world, are beginning to harvest new clues to the origin and evolution of the universe's largest building blocks, the galaxies. It's a bit like finding a family scrapbook containing snapshots that capture the lives of family members from infancy through adolescence to adulthood. The Hubble Space Telescope has joined forces with the Chandra X-ray Observatory to survey a relatively broad swath of sky encompassing tens of thousands of galaxies stretching far back in time. Called the Great Observatories Origins Deep Survey (GOODS), astronomers are studying galaxy formation and evolution over a wide range of distances and ages.

(More at HubbleSite.com)
 
Megastar-Birth Cluster is Biggest, Brightest and Hottest Ever Seen

low_STSCI-H-p0332a-k-1340x520.png


A mysterious arc of light found behind a distant cluster of galaxies has turned out to be the biggest, brightest, and hottest star-forming region ever seen in space. The so-called Lynx arc is 1 million times brighter than the well-known Orion Nebula, a nearby prototypical star-birth region visible with small telescopes. The newly identified super-cluster contains a million blue-white stars that are twice as hot as similar stars in our Milky Way galaxy. It is a rarely seen example of the early days of the universe where furious firestorms of star birth blazed across the skies. The spectacular cluster's opulence is dimmed when seen from Earth only because it is 12 billion light-years away.

(More at HubbleSite.com)
 
Back
Top