Space Hubble Telescope News

Hubble Launches Large Ultraviolet-Light Survey of Nearby Stars

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1377/low_STScI-H-p2050a-k-1340x520.png

Stars are not created equal. They span a broad range of sizes, ages, and temperatures from diminutive red, cool, low-mass stars to opulent blue, hot, massive stars. Our Sun is roughly midway between these populations. Because stars are the universe's LEGO blocks for building immense galaxies, astronomers are always seeking a much better understanding of their birth and death. Stars' behavior over their lifespan relates to everything from planets to the formation and evolution of galaxies.

To better understand stars and their evolution, the Space Telescope Science Institute has launched an ambitious new initiative with the Hubble Space Telescope called ULLYSES (UV Legacy Library of Young Stars as Essential Standards). The comprehensive program will build a dataset that can be used to create a spectral library of stellar "templates" for capturing the diversity of stars. This is ensuring a legacy dataset for a wide range of astrophysical topics. Located above the obscuring atmosphere, Hubble's ultraviolet sensitivity makes it the only observatory currently capable of studying stars at those wavelengths of light. Young low-mass stars and massive monster stars radiate a lot of their energy in ultraviolet light.

(More at HubbleSite.com)
 
Hubble's Deepest View of the Universe Unveils Bewildering Galaxies across Billions of Years

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/205/low_STSCI-H-p9601a-k-1340x520.png

One peek into a small part of the sky, one giant leap back in time. The Hubble telescope has provided mankind's deepest, most detailed visible view of the universe.

Representing a narrow "keyhole" view stretching to the visible horizon of the universe, the Hubble Deep Field image covers a speck of the sky only about the width of a dime 75 feet away. Though the field is a very small sample of the heavens, it is considered representative of the typical distribution of galaxies in space, because the universe, statistically, looks largely the same in all directions. Gazing into this small field, Hubble uncovered a bewildering assortment of at least 1,500galaxies at various stages of evolution.

(More at HubbleSite.com)
 
Hubble's New Camera Delivers Breathtaking Views of the Universe

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/501/low_STSCI-H-p0211a-k-1340x520.png

Jubilant astronomers unveiled humankind's most spectacular views of the universe, courtesy of the newly installed Advanced Camera for Surveys (ACS) aboard NASA's Hubble Space Telescope. Among the suite of four ACS photographs to demonstrate the camera's capabilities is a stunning view of a colliding galaxy dubbed the "Tadpole" (UGC10214). Set against a rich tapestry of 6,000 galaxies, the Tadpole, with its long tail of stars, looks like a runaway pinwheel firework. Another picture depicts a spectacular collision between two spiral galaxies -- dubbed "The Mice" -- that presages what may happen to our own Milky Way several billion years from now when it collides with the neighboring galaxy in the constellation Andromeda. Looking closer to home, ACS imaged the "Cone Nebula," a craggy-looking mountaintop of cold gas and dust that is a cousin to Hubble's iconic "pillars of creation" in the Eagle Nebula, photographed in 1995. Peering into a celestial maternity ward called the Omega Nebula or M17, ACS revealed a watercolor fantasy-world of glowing gases, where stars and perhaps embryonic planetary systems are forming.

(More at HubbleSite.com)
 
NASA's Hubble Sees Unexplained Brightness from Colossal Explosion

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1381/low_STScI-H-p2048a-k-1340x520.png

In our infinite universe, stars can go bump in the night. When this happens between a pair of burned-out, crushed stars called neutron stars, the resulting fireworks show, called a kilonova, is beyond comprehension. The energy unleashed by the collision briefly glows 100 million times brighter than our Sun.

What's left from the smashup? Typically an even more crushed object called a black hole. But in this case Hubble found forensic clues to something even stranger happening after the head-on collision.

The intense flood of gamma-rays signaling astronomers to this event has been seen before in other stellar smashups. But something unexpected popped up in Hubble's near-infrared vision. Though a gusher of radiation from the aftermath of the explosion—stretching from X-rays to radio waves—seemed typical, the outpouring of infrared radiation was not. It was 10 times brighter than predicted for kilonovae. Without Hubble, the gamma-ray burst would have appeared like many others, and scientists would not have known about the bizarre infrared component.

The most plausible explanation is that the colliding neutron stars merged to form a more massive neutron star. It's like smashing two Volkswagen Beetles together and getting a limousine. This new beast sprouted a powerful magnetic field, making it a unique class of object called a magnetar. The magnetar deposited energy into the ejected material, causing it to glow even more brightly in infrared light than predicted. (If a magnetar flew within 100,000 miles of Earth, its intense magnetic field would erase the data on every credit card on our planet!)

(More at HubbleSite.com)
 
Hubble Marks 30 Years in Space with Tapestry of Blazing Starbirth

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1351/low_STSCI-H-p2016a-k-1340x520.png

A colorful image resembling a cosmic version of an undersea world teeming with stars is being released to commemorate the Hubble Space Telescope's 30 years of viewing the wonders of space.

In the Hubble portrait, the giant red nebula (NGC 2014) and its smaller blue neighbor (NGC 2020) are part of a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, located 163,000 light-years away. The image is nicknamed the "Cosmic Reef," because NGC 2014 resembles part of a coral reef floating in a vast sea of stars.

Some of the stars in NGC 2014 are monsters. The nebula's sparkling centerpiece is a grouping of bright, hefty stars, each 10 to 20 times more massive than our Sun. The seemingly isolated blue nebula at lower left (NGC 2020) has been created by a solitary mammoth star 200,000 times brighter than our Sun. The blue gas was ejected by the star through a series of eruptive events during which it lost part of its outer envelope of material.

(More at HubbleSite.com)
 
Hubble Marks 30 Years in Space with Tapestry of Blazing Starbirth

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1351/low_STSCI-H-p2016a-k-1340x520.png

A colorful image resembling a cosmic version of an undersea world teeming with stars is being released to commemorate the Hubble Space Telescope's 30 years of viewing the wonders of space.

In the Hubble portrait, the giant red nebula (NGC 2014) and its smaller blue neighbor (NGC 2020) are part of a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, located 163,000 light-years away. The image is nicknamed the "Cosmic Reef," because NGC 2014 resembles part of a coral reef floating in a vast sea of stars.

Some of the stars in NGC 2014 are monsters. The nebula's sparkling centerpiece is a grouping of bright, hefty stars, each 10 to 20 times more massive than our Sun. The seemingly isolated blue nebula at lower left (NGC 2020) has been created by a solitary mammoth star 200,000 times brighter than our Sun. The blue gas was ejected by the star through a series of eruptive events during which it lost part of its outer envelope of material.

(More at HubbleSite.com)
 
Hubble Spots Possible Water Plumes Erupting on Jupiter's Moon Europa

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1154/low_hs-2016-33-a-keystone.png

New findings from NASA's Hubble Space Telescope show suspected water plumes erupting from Jupiter's icy moon Europa. These observations bolster earlier Hubble work suggesting that Europa is venting water vapor. A team of astronomers, led by William Sparks of the Space Telescope Science Institute in Baltimore, Maryland, observed these finger-like projections while viewing Europa's limb as the moon passed in front of Jupiter. The team was inspired to use this observing method by studies of atmospheres of planets orbiting other stars.

The plumes are estimated to rise about 125 miles before, presumably, raining material back down onto Europa's surface. This is exciting because Europa is a plausible place for life to have developed beyond the Earth. If the venting plumes originate in a subsurface ocean, they could act as an elevator to bring deep-sea life above Europa's surface, where it could be sampled by visiting spacecraft. This offers a convenient way to access the chemistry of that ocean without drilling through miles of ice.

(More at HubbleSite.com)
 
Hubble Marks 30 Years in Space with Tapestry of Blazing Starbirth

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1351/low_STSCI-H-p2016a-k-1340x520.png

A colorful image resembling a cosmic version of an undersea world teeming with stars is being released to commemorate the Hubble Space Telescope's 30 years of viewing the wonders of space.

In the Hubble portrait, the giant red nebula (NGC 2014) and its smaller blue neighbor (NGC 2020) are part of a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, located 163,000 light-years away. The image is nicknamed the "Cosmic Reef," because NGC 2014 resembles part of a coral reef floating in a vast sea of stars.

Some of the stars in NGC 2014 are monsters. The nebula's sparkling centerpiece is a grouping of bright, hefty stars, each 10 to 20 times more massive than our Sun. The seemingly isolated blue nebula at lower left (NGC 2020) has been created by a solitary mammoth star 200,000 times brighter than our Sun. The blue gas was ejected by the star through a series of eruptive events during which it lost part of its outer envelope of material.

(More at HubbleSite.com)
 
Hubble Marks 30 Years in Space with Tapestry of Blazing Starbirth

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1351/low_STSCI-H-p2016a-k-1340x520.png

A colorful image resembling a cosmic version of an undersea world teeming with stars is being released to commemorate the Hubble Space Telescope's 30 years of viewing the wonders of space.

In the Hubble portrait, the giant red nebula (NGC 2014) and its smaller blue neighbor (NGC 2020) are part of a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, located 163,000 light-years away. The image is nicknamed the "Cosmic Reef," because NGC 2014 resembles part of a coral reef floating in a vast sea of stars.

Some of the stars in NGC 2014 are monsters. The nebula's sparkling centerpiece is a grouping of bright, hefty stars, each 10 to 20 times more massive than our Sun. The seemingly isolated blue nebula at lower left (NGC 2020) has been created by a solitary mammoth star 200,000 times brighter than our Sun. The blue gas was ejected by the star through a series of eruptive events during which it lost part of its outer envelope of material.

(More at HubbleSite.com)
 
Hubble Catches Possible 'Shadow Play' of the Disk Around a Black Hole

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1385/low_STScI-H-p2058a-k-1340x520.png

Black holes are the universe's monsters: voracious eating machines that swallow anything that ventures near them.

These compact behemoths pull stars and gas into a disk that swirls around them. The feeding generates a prodigious amount of energy, producing a powerful gusher of light from superheated infalling gas.

These disks are so far away that it's nearly impossible to discern any detail about them. But by a quirk of alignment, astronomers may be getting a glimpse of the structure of the disk around the black hole in nearby galaxy IC 5063. The Hubble Space Telescope has observed a collection of narrow bright rays and dark shadows beaming out of the blazingly bright center of the active galaxy.

One possible explanation for the effect is that the dusty disk of material surrounding the black hole is casting its shadow into space. Some light penetrates gaps in the dust ring, creating the bright rays that resemble the floodlights accompanying a Hollywood movie premier. These telltale beams offer clues to the distribution of material near the black hole that is causing the shadow play.

What is fascinating is that we can see the same interplay of light and shadow in our sky at sunset, when the setting Sun casts streaks of bright rays and dark shadows through scattered clouds.

(More at HubbleSite.com)
 
Hubble Catches Possible 'Shadow Play' of the Disk Around a Black Hole

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1385/low_STScI-H-p2058a-k-1340x520.png

Black holes are the universe's monsters: voracious eating machines that swallow anything that ventures near them.

These compact behemoths pull stars and gas into a disk that swirls around them. The feeding generates a prodigious amount of energy, producing a powerful gusher of light from superheated infalling gas.

These disks are so far away that it's nearly impossible to discern any detail about them. But by a quirk of alignment, astronomers may be getting a glimpse of the structure of the disk around the black hole in nearby galaxy IC 5063. The Hubble Space Telescope has observed a collection of narrow bright rays and dark shadows beaming out of the blazingly bright center of the active galaxy.

One possible explanation for the effect is that the dusty disk of material surrounding the black hole is casting its shadow into space. Some light penetrates gaps in the dust ring, creating the bright rays that resemble the floodlights accompanying a Hollywood movie premier. These telltale beams offer clues to the distribution of material near the black hole that is causing the shadow play.

What is fascinating is that we can see the same interplay of light and shadow in our sky at sunset, when the setting Sun casts streaks of bright rays and dark shadows through scattered clouds.

(More at HubbleSite.com)
 
Hubble Marks 30 Years in Space with Tapestry of Blazing Starbirth

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1351/low_STSCI-H-p2016a-k-1340x520.png

A colorful image resembling a cosmic version of an undersea world teeming with stars is being released to commemorate the Hubble Space Telescope's 30 years of viewing the wonders of space.

In the Hubble portrait, the giant red nebula (NGC 2014) and its smaller blue neighbor (NGC 2020) are part of a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, located 163,000 light-years away. The image is nicknamed the "Cosmic Reef," because NGC 2014 resembles part of a coral reef floating in a vast sea of stars.

Some of the stars in NGC 2014 are monsters. The nebula's sparkling centerpiece is a grouping of bright, hefty stars, each 10 to 20 times more massive than our Sun. The seemingly isolated blue nebula at lower left (NGC 2020) has been created by a solitary mammoth star 200,000 times brighter than our Sun. The blue gas was ejected by the star through a series of eruptive events during which it lost part of its outer envelope of material.

(More at HubbleSite.com)
 
Blast from the Past: Farthest Supernova Ever Seen Sheds Light on Dark Universe

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/447/low_STSCI-H-p-0109a-k-1340x520.png

Gazing to the far reaches of space and time, NASA's Hubble Space Telescope identified the farthest stellar explosion ever seen, a supernova that erupted 10 billion years ago. By examining the glow from this dying star, astronomers have amassed more evidence that a mysterious, repulsive force is at work in the cosmos, making galaxies rush ever faster away from each other.

(More at HubbleSite.com)
 
Hubble Unmasks Ghost Galaxies

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/950/low_STSCI-H-p1226a-k-1340x520.png

Astronomers have puzzled over why some puny, extremely faint dwarf galaxies spotted in our Milky Way galaxy's back yard contain so few stars. These ghost-like galaxies are thought to be some of the tiniest, oldest, and most pristine galaxies in the universe. They have been discovered over the past decade by astronomers using automated computer techniques to search through the images of the Sloan Sky Survey. But astronomers needed NASA's Hubble Space Telescope to help solve the mystery of these star-starved galaxies.

Hubble views of Leo IV and two other small-fry galaxies in this study reveal that their stars share the same birth date. The galaxies all started forming stars more than 13 billion years ago – and then abruptly stopped – all in the first billion years after the universe was born in the big bang. Because the stars in these galaxies are so ancient and share the same age, astronomers suggest that a global event, such as reionization, shut down star formation in them. Reionization is a transitional phase in the early universe when the first stars burned off a fog of cold hydrogen.

(More at HubbleSite.com)
 
Hubble Celebrates 29th Anniversary with a Colorful Look at the Southern Crab Nebula

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1291/low_STSCI-H-p1915a-k-1340x520.png

This Hubble image shows the results of two stellar companions in a gravitational waltz, several thousand light-years from Earth in the southern constellation Centaurus. The stellar duo, consisting of a red giant and white dwarf, are too close together to see individually in this view. But the consequences of their whirling about each other are two vast shells of gas expanding into space like a runaway hot air balloon. Both stars are embedded in a flat disk of hot material that constricts the outflowing gas so that it only escapes away above and below the stars. This apparently happens in episodes because the nebula has two distinct nested hourglass-shaped structures. The bubbles of gas and dust appear brightest at the edges, giving the illusion of crab legs. The rich colors correspond to glowing hydrogen, sulfur, nitrogen, and oxygen. This image was taken to celebrate Hubble's 29th anniversary since its launch on April 24, 1990.

(More at HubbleSite.com)
 
Hubble Observes First Confirmed Interstellar Comet

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1314/low_STSCI-H-p1953a-k-1340x520.png

No one knows where it came from. No one knows how long it has been drifting through the empty, cold abyss of interstellar space. But this year an object called comet 2I/Borisov came in from the cold. It was detected falling past our Sun by a Crimean amateur astronomer. This emissary from the black unknown captured the attention of worldwide astronomers who aimed all kinds of telescopes at it to watch the comet sprout a dust tail. The far visitor is only the second known object to enter our solar system coming from elsewhere in the galaxy, based on its speed and trajectory. Like a racetrack photographer trying to capture a speeding derby horse, Hubble took a series of snapshots as the comet streaked along at 110,000 miles per hour. Hubble provided the sharpest image to date of the fleeting comet, revealing a central concentration of dust around an unseen nucleus. The comet was 260 million miles from Earth when Hubble took the photo.

In 2017, the first identified interstellar visitor, an object formally named 'Oumuamua, swung within 24 million miles of the Sun before racing out of the solar system. Unlike comet 2I/Borisov, 'Oumuamua still defies any simple categorization. It did not behave like a comet, and it has a variety of unusual characteristics. Comet 2I/Borisov looks a lot like the traditional comets found inside our solar system, which sublimate ices, and cast off dust as they are warmed by the Sun. The wandering comet provides invaluable clues to the chemical composition, structure, and dust characteristics of planetary building blocks presumably forged in an alien star system.

(More at HubbleSite.com)
 
'Cotton Candy' Planet Mysteries Unravel in New Hubble Observations

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1324/low_STScI-H-p1960a-k1340x520.png

When astronomers look around the solar system, they find that planets can be made out of almost anything. Terrestrial planets like Earth, Mars, and Venus have dense iron cores and rocky mantles. The massive outer planets like Jupiter and Saturn are mostly gaseous and liquid. Astronomers can't peel back their cloud layers to look inside, but their composition is deduced by comparing the planet's mass (as calculated from its orbital motion) to its size. The result is that Jupiter has the density of water, and Saturn has an even lower density (it could float in a huge bathtub). These gas giants are just 1/5th the density of rocky Earth.

Now astronomers have uncovered a completely new class of planet unlike anything found in our solar system. Rather than a "terrestrial" or "gas giant" they might better be called "cotton candy" planets because their density is so low. These planets are so bloated they are nearly the size of Jupiter, but are just 1/100th of its mass. Three of them orbit the Sun-like star Kepler 51, located approximately 2,600 light-years away.

The puffed-up planets might represent a brief transitory phase in planet evolution, which would explain why we don't see anything like them in the solar system. The planets may have formed much farther from their star and migrated inward. Now their low-density hydrogen/helium atmospheres are bleeding off into space. Eventually, much smaller planets might be left behind.

(More at HubbleSite.com)
 
Hubble Marks 30 Years in Space with Tapestry of Blazing Starbirth

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1351/low_STSCI-H-p2016a-k-1340x520.png

A colorful image resembling a cosmic version of an undersea world teeming with stars is being released to commemorate the Hubble Space Telescope's 30 years of viewing the wonders of space.

In the Hubble portrait, the giant red nebula (NGC 2014) and its smaller blue neighbor (NGC 2020) are part of a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, located 163,000 light-years away. The image is nicknamed the "Cosmic Reef," because NGC 2014 resembles part of a coral reef floating in a vast sea of stars.

Some of the stars in NGC 2014 are monsters. The nebula's sparkling centerpiece is a grouping of bright, hefty stars, each 10 to 20 times more massive than our Sun. The seemingly isolated blue nebula at lower left (NGC 2020) has been created by a solitary mammoth star 200,000 times brighter than our Sun. The blue gas was ejected by the star through a series of eruptive events during which it lost part of its outer envelope of material.

(More at HubbleSite.com)
 
In Planet Formation, It's Location, Location, Location

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1361/low_STScI-H-p2015a-k-1340x520.png

One of the top priorities for new home buyers is location. Finding a home in the right neighborhood is a key ingredient for a happy, prosperous family.

Like families hunting for a house, fledgling planets also need the proper location to grow and thrive. Astronomers using Hubble to probe the giant, young star cluster Westerlund 2 are finding that stars residing in the system's crowded central city face a rough-and-tumble neighborhood that suppresses planet formation. The Hubble observations show that lower-mass stars near the cluster's core do not have the large, dense clouds of dust that eventually could become planets in just a few million years.

But life is a lot easier for stars and would-be planets in the cluster suburbs, farther away from the dense center. Hubble detected those planet-forming clouds embedded in disks encircling stars in these neighborhoods.

The absence of planet-forming clouds around stars near the center is mainly due to their bully neighbors: bright, giant stars, some of which weigh up to 80 times the Sun's mass. Their blistering ultraviolet light and hurricane-like stellar winds of charged particles blowtorch disks around neighboring lower-mass stars, dispersing the giant dust clouds.

Understanding the importance of location and environment in nurturing planet formation is crucial for building models of planet formation and stellar evolution. Located 20,000 light-years away, Westerlund 2 is a unique laboratory to study stellar evolutionary processes because it's relatively nearby, quite young, and contains a large stellar population.

(More at HubbleSite.com)
 
New Survey Finds that Single Burst of Star Formation Created Milky Way’s Central Bulge

http://imgsrc.hubblesite.org/hvi/uploads/story/display_image/1384/low_STScI-J-p2056a-k-1340x520.png

Like most spiral galaxies, the Milky Way has a roughly spherical collection of stars at its center called the bulge. How the bulge formed has been a long-standing mystery, with many studies suggesting that it built up over time through multiple bursts of star formation.

New research finds that the majority of stars in our galaxy’s central bulge formed in a single burst of star formation more than 10 billion years ago. To reach this conclusion, astronomers surveyed millions of stars across 200 square degrees of sky—an area equivalent to 1,000 full Moons. The resulting wealth of data is expected to fuel many more scientific inquiries.

(More at HubbleSite.com)
 
Last edited by a moderator:
Back
Top