Space Hubble Telescope News

Comet or Asteroid? Hubble Discovers that a Unique Object is a Binary

low_STSCI-H-p1732a-k-1340x520.png


Astronomers categorize the minor bodies in the solar system according to their location and physical composition. Comets are a loose collection of ice and dust that fall in toward the Sun from beyond the orbits of the major planets, and grow long tails of dust and gas along the way. Asteroids are rocky or metallic and are relegated to a zone between Mars and Jupiter. But nature isn't that tidy. The Hubble Space Telescope photographed a pair of asteroids orbiting each other that have a tail of dust, which is definitely a comet-like feature. The odd object, called 2006 VW139/288P, is the first known binary asteroid that is also classified as a main-belt comet. Roughly 5,000 years ago, 2006 VW139/288P probably broke into two pieces due to a fast rotation.

(More at HubbleSite.com)
 
Hubble Movie Shows Movement of Light Echo Around Exploded Star

low_STSCI-H-v1742e-900x600.gif


Voices reverberating off mountains and the sound of footsteps bouncing off walls are examples of an echo. Echoes happen when sound waves ricochet off surfaces and return to the listener.

Space has its own version of an echo. It’s not made with sound but with light, and occurs when light bounces off dust clouds.

The Hubble telescope has just captured one of these cosmic echoes, called a “light echo,” in the nearby starburst galaxy M82, located 11.4 million light-years away. A movie assembled from more than two years’ worth of Hubble images reveals an expanding shell of light from a supernova explosion sweeping through interstellar space three years after the stellar blast was discovered. The “echoing” light looks like a ripple expanding on a pond. The supernova, called SN 2014J, was discovered on Jan. 21, 2014.

A light echo occurs because light from the stellar blast travels different distances to arrive at Earth. Some light comes to Earth directly from the supernova blast. Other light is delayed because it travels indirectly. In this case, the light is bouncing off a huge dust cloud that extends 300 to 1,600 light-years around the supernova and is being reflected toward Earth.

So far, astronomers have spotted only 15 light echoes around supernovae outside our Milky Way galaxy. Light echo detections from supernovae are rarely seen because they must be nearby for a telescope to resolve them.

(More at HubbleSite.com)
 
NASA Space Telescopes Provide a 3D Journey Through the Orion Nebula

low_STScI-H-p1804a-k1340x520.jpg


By combining the visible and infrared capabilities of the Hubble and Spitzer space telescopes, astronomers and visualization specialists from NASA's Universe of Learning program have created a spectacular, three-dimensional, fly-through movie of the magnificent Orion nebula, a nearby stellar nursery. Using actual scientific data along with Hollywood techniques, a team at the Space Telescope Science Institute in Baltimore, Maryland, and the Caltech/IPAC in Pasadena, California, has produced the best and most detailed multi-wavelength visualization yet of the Orion nebula. The three-minute movie allows viewers to glide through the picturesque star-forming region and experience the universe in an exciting new way.

(More at HubbleSite.com)
 
Arrested Development: Hubble Finds Relic Galaxy Close to Home

low_STSCI-H-p1817a-k-1340x520.png


The adventuring cinema archeologist Indiana Jones would be delighted to find a long-sought relic in his own backyard. Astronomers have gotten lucky enough to achieve such a quest. They identified a very rare and odd assemblage of stars that has remained essentially unchanged for the past 10 billion years. The diffuse stellar island provides valuable new insights into the origin and evolution of galaxies billions of years ago.

As far as galaxy evolution goes, this object is clearly a case of “arrested development.” The galaxy, NGC 1277, started its life with a bang long ago, ferociously churning out stars 1,000 times faster than seen in our own Milky Way today. But it abruptly went quiescent as the baby boomer stars aged and grew ever redder. Though Hubble has seen such “red and dead” galaxies in the early universe, one has never been conclusively found nearby. Where the early galaxies are so distant, they are just red dots in Hubble deep-sky images. NGC 1277 offers a unique opportunity to see one up close and personal.

The telltale sign of the galaxy’s state lies in the ancient globular clusters that swarm around it. Massive galaxies tend to have both metal-poor (appearing blue) and metal-rich (appearing red) globular clusters. The red clusters are believed to form as the galaxy forms, while the blue clusters are later brought in as smaller satellites are swallowed by the central galaxy. However, NGC 1277 is almost entirely lacking in blue globular clusters. The red clusters are the strongest evidence that the galaxy went out of the star-making business long ago. However, the lack of blue clusters suggests that NGC 1277 never grew further by gobbling up surrounding galaxies.

(More at HubbleSite.com)
 
Hubble 28th Anniversary Image Captures Roiling Heart of Vast Stellar Nursery

low_M8-UVIS-crop-1500-180302.png


For 28 years, NASA’s Hubble Space Telescope has been delivering breathtaking views of the universe. Although the telescope has made more than 1.5 million observations of over 40,000 space objects, it is still uncovering stunning celestial gems.

The latest offering is this image of the Lagoon Nebula to celebrate the telescope’s anniversary. Hubble shows this vast stellar nursery in stunning unprecedented detail.

At the center of the photo, a monster young star 200,000 times brighter than our Sun is blasting powerful ultraviolet radiation and hurricane-like stellar winds, carving out a fantasy landscape of ridges, cavities, and mountains of gas and dust. This region epitomizes a typical, raucous stellar nursery full of birth and destruction.

(More at HubbleSite.com)
 
Our Solar System’s First Known Interstellar Object Gets Unexpected Speed Boost

low_STScI-H-p1825a-k1340x520.png


Using observations from NASA’s Hubble Space Telescope and ground-based observatories, an international team of scientists have confirmed `Oumuamua (oh-MOO-ah-MOO-ah), the first known interstellar object to travel through our solar system, got an unexpected boost in speed and shift in trajectory as it passed through the inner solar system last year.

(More at HubbleSite.com)
 
NASA's Webb Space Telescope to Inspect Atmospheres of Gas Giant Exoplanets

low_STSCI-J-p1830a-k1340x520.png


Thousands of exoplanets are known to orbit distant stars. Far fewer have had their atmospheres studied. The Webb telescope will bring new capabilities for determining atmospheric compositions, temperatures, and structures. Some of Webb’s earliest observations will focus on gas giants, whose puffy atmospheres should be easier to inspect. Lessons learned there will apply to later observations of small, rocky worlds.

(More at HubbleSite.com)
 
Saturn and Mars Team Up to Make Their Closest Approaches to Earth in 2018

low_STSCI-H-p1829a-k-1340x520.png


As Saturn and Mars ventured close to Earth, Hubble captured their portraits in June and July 2018, respectively. The telescope photographed the planets near opposition, when the Sun, Earth and an outer planet are lined up, with Earth sitting in between the Sun and the outer planet. Around the time of opposition, a planet is at its closest distance to Earth in its orbit. Hubble viewed Saturn on June 6, when the ringed world was approximately 1.36 billion miles from Earth, as it approached a June 27 opposition. Mars was captured on July 18, at just 36.9 million miles from Earth, near its July 27 opposition. Hubble saw the planets during summertime in Saturn’s northern hemisphere and springtime in Mars’ southern hemisphere. The increase in sunlight in Saturn’s northern hemisphere heated the atmosphere and triggered a large storm that is now disintegrating in Saturn’s northern polar region. On Mars, a spring dust storm erupted in the southern hemisphere and ballooned into a global event enshrouding the entire planet.

(More at HubbleSite.com)
 
Astronomers Uncover New Clues to the Star that Wouldn't Die

low_PR1833-Eta-Car-SN-velocities.jpg


It takes more than a massive outburst to destroy the mammoth star Eta Carinae, one of the brightest known stars in the Milky Way galaxy. About 170 years ago, Eta Carinae erupted, unleashing almost as much energy as a standard supernova explosion.

Yet that powerful blast wasn’t enough to obliterate the star, and astronomers have been searching for clues to explain the outburst ever since. Although they cannot travel back to the mid-1800s to witness the actual eruption, they can watch a rebroadcast of part of the event — courtesy of some wayward light from the explosion. Rather than heading straight toward Earth, some of the light from the outburst rebounded or “echoed” off of interstellar dust, and is just now arriving at Earth. This effect is called a light echo.

The surprise is that new measurements of the 19th-century eruption, made by ground-based telescopes, reveal material expanding with record-breaking speeds of up to 20 times faster than astronomers expected. The observed velocities are more like the fastest material ejected by the blast wave in a supernova explosion, rather than the relatively slow and gentle winds expected from massive stars before they die.

Based on the new data, researchers suggest that the 1840s eruption may have been triggered by a prolonged stellar brawl among three rowdy sibling stars, which destroyed one star and left the other two in a binary system. This tussle may have culminated with a violent explosion when Eta Carinae devoured one of its two companions, rocketing more than 10 times the mass of our Sun into space. The ejected mass created gigantic bipolar lobes resembling the dumbbell shape seen in present-day images.

(More at HubbleSite.com)
 
Hubble Goes Wide to Seek Out Far-Flung Galaxies

low_STSCI-H-p1839a-k-1340x520.png


The universe is a big place. The Hubble Space Telescope's views burrow deep into space and time, but cover an area a fraction the angular size of the full Moon. The challenge is that these "core samples" of the sky may not fully represent the universe at large. This dilemma for cosmologists is called cosmic variance. By expanding the survey area, such uncertainties in the structure of the universe can be reduced.

A new Hubble observing campaign, called Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO), will boldly expand the space telescope's view into regions that are adjacent to huge galaxy clusters previously photographed by NASA's Spitzer and Hubble space telescopes under a program called Frontier Fields.

The six massive clusters were used as "natural telescopes," to look for amplified images of galaxies and supernovas that are so distant and faint that they could not be photographed by Hubble without the boost of light caused by a phenomenon called gravitational lensing. The clusters' large masses, mainly composed of dark matter, magnify and distort the light coming from distant background galaxies that otherwise could not be detected. The BUFFALO program is designed to identify galaxies in their earliest stages of formation, less than 800 million years after the big bang.

(More at HubbleSite.com)
 
Astronomers Find First Evidence of Possible Moon Outside Our Solar System

low_STScI-H-p1845a-k1340x520.png


Our solar system has eight major planets, and nearly 200 moons. Though astronomers have to date found nearly 4,000 planets orbiting other stars, no moons have yet been found. That hasn't been for any lack of looking, it’s just that moons are smaller than planets and therefore harder to detect.

The Hubble and Kepler space telescopes found evidence for what could be a giant moon accompanying a gas-giant planet that orbits the star Kepler-1625, located 8,000 light-years away in the constellation Cygnus. The moon may be as big as Neptune and it orbits a planet several times more massive than Jupiter.

If our solar system is a typical example, moons may outnumber planets in our galaxy by at least an order of magnitude or more. This promises a whole new frontier for characterizing the nature of moons and their potential for hosting life as we know it.

The exomoon at Kepler-1625b is too far away to be directly photographed. Its presence is inferred when it passes in front of the star, momentarily dimming its light. Such an event is called a transit. However, the "footprint" of the moon's transit signal is weaker than for the host planet.

The researchers caution that the moon’s presence will need to be conclusively proven by follow-up Hubble observations.

(More at HubbleSite.com)
 
How to Weigh a Black Hole Using NASA's Webb Space Telescope

low_STSCI-J-p1837a-k-1340x520.png


Galaxies and their central, supermassive black holes are inextricably linked. Both grow in lockstep for reasons that aren’t yet understood. To gain new insights, Webb will turn its infrared gaze to the center of a nearby galaxy called NGC 4151, whose supermassive black hole is actively feeding and glowing brightly. By measuring the motions of stars clustered around the black hole and comparing them to computer models, astronomers can determine the black hole’s mass. This challenging measurement will test the capabilities of Webb’s innovative instrument called an integral field unit.

(More at HubbleSite.com)
 
Hubble Captures the Ghost of Cassiopeia

low_STSCI-H-p1842a-k-1340x520.png


The brightest stars embedded in nebulae throughout our galaxy pour out a torrent of radiation that eats into vast clouds of hydrogen gas – the raw material for building new stars. This etching process sculpts a fantasy landscape where human imagination can see all kinds of shapes and figures. A nebula in the constellation of Cassiopeia has flowing veils of gas and dust that have earned it the nickname "Ghost Nebula." The nebula is being blasted by a torrent of radiation from a nearby, blue-giant star called Gamma Cassiopeiae, which can be easily seen with the unaided eye at the center of the distinctive "W" asterism that forms the constellation. This Hubble Space Telescope view zooms in on the creepy-looking top of the nebula, material is swept away from it, forming a fantail shape. IC 63 is located 550 light-years away.

(More at HubbleSite.com)
 
Hubble Reveals a Giant Cosmic "Bat Shadow"

low_STSCI-H-p1840a-k-1340x520.png


Like a fly that wanders into a flashlight’s beam, a young star’s planet-forming disk is casting a giant shadow, nicknamed the “Bat Shadow.” Hubble’s near-infrared vision captured the shadow of the disk of this fledgling star, which resides nearly 1,300 light-years away in a stellar nursery called the Serpens Nebula. In this Hubble image, the shadow spans approximately 200 times the length of our solar system. It is visible in the upper right portion of the picture. The young star and its disk likely resemble what the solar system looked like when it was only 1 or 2 million years old.

(More at HubbleSite.com)
 
Hubble Uncovers Thousands of Globular Star Clusters Scattered Among Galaxies

low_STSCI-H-p1844a-k-1340x520.png


Globular star clusters are favorite targets for amateur sky watchers. To the naked eye they appear as fuzzy-looking stars. Through a small telescope they resolve into glittering snowball-shaped islands of innumerable stars crowded together. About 150 globular star clusters orbit our Milky Way, like bees buzzing around a hive. They are the earliest homesteaders of our galaxy, containing the universe's oldest known stars.

Hubble is so powerful it can see globular star clusters 300 million light-years away. And, a lot of them. Peering into the heart of the giant Coma cluster of galaxies Hubble captured a whopping 22,426 globular star clusters. The survey found the globular clusters scattered in space among the 1,000 galaxies inside the Coma cluster. They have been orphaned from their home galaxy due to galaxy near-collisions inside the traffic-jammed galaxy cluster. Because they are so numerous in the Coma cluster, they are excellent tracers of the entire gravitational field that keeps the galaxies from flinging off into space. The gravity is a tracer of the distribution of dark matter.

(More at HubbleSite.com)
 
Celebratory Galaxy Photo Honors 25th Anniversary of NASA's First Hubble Servicing Mission

low_STSCI-H-p1848a-k-1340x520.png


Over the past 28 years Hubble has photographed innumerable galaxies throughout the universe, near and far. But one especially photogenic galaxy located 55 million light-years away holds a special place in Hubble history. As NASA made plans to correct Hubble's blurry vision in 1993 (due to a manufacturing flaw in its primary mirror) they selected several astronomical objects that Hubble should be aimed at to demonstrate the planned optical fix. The magnificent grand spiral galaxy M100 seemed an ideal target that would just fit inside Hubble's field-of-view. This required that a comparison photo be taken while Hubble was still bleary-eyed. The Wide Field/Planetary Camera 1 was selected for the task. And, the picture had to be taken before astronauts swapped-out the camera with the vision-corrected Wide Field/Planetary Camera 2, in December 1993. Following the servicing mission Hubble re-photographed the galaxy again, and it snapped into crystal clear focus. The public celebrated with Hubble's triumphant return to the clear vision that had been promised. And, jaw-dropping pictures of the vast universe that followed have not disappointed space enthusiasts. Because of the astronaut servicing missions, Hubble's capabilities have only gotten better. To commemorate the 25th anniversary of the first servicing mission, this 2-panel photo compares the blurry, pre-servicing 1993 image to a 2009 image taken with Hubble's newer, Wide Field Camera 3 instrument, installed during the last astronaut servicing mission to the space telescope.

(More at HubbleSite.com)
 
NASA's Webb Telescope Will Provide Census of Fledgling Stars in Stellar Nursery

low_STScI-J-p1859a-k1340x520.jpg


Billions of years ago, the young universe blazed with the brilliant light of myriad stars bursting to life. The young stars arising from this stellar "baby boom" are too far away and too faint for even the most powerful telescopes to study in detail.

Astronomers will use the upcoming NASA James Webb Space Telescope to study star birth in the nearby Small Magellanic Cloud galaxy, which contains some of the same conditions that existed in galaxies during the universe’s peak star-formation epoch. Webb’s sharp infrared vision will help researchers take a census of medium-mass stars like our Sun still wrapped in their dense, dusty cocoons in the giant stellar nursery NGC 346, located about 200,000 light-years away. This census could help astronomers develop a clearer picture of how the galaxies of long ago churned out stars so rapidly.

(More at HubbleSite.com)
 
Triangulum Galaxy Shows Stunning Face in Detailed Hubble Portrait

low_STSCI-H-p1901a-k-1340x520.png


NASA's Hubble Space Telescope has produced this stunningly detailed portrait of the Triangulum galaxy (M33), displaying a full spiral face aglow with the light of nearly 25 million individually resolved stars. It is the largest high-resolution mosaic image of Triangulum ever assembled, composed of 54 Hubble fields of view spanning an area more than 19,000 light-years across.

The Local Group of galaxies is dominated by the Milky Way, Andromeda, and Triangulum. As the junior member of this trio of spiral galaxies, Triangulum provides the valuable comparisons and contrasts that only a close companion can. Most notably, Triangulum's star formation is 10 times more intense than in the comparable Hubble panorama of the neighboring Andromeda galaxy. Astronomers have only begun to mine the enormous amount of data generated by these new Hubble observations, and expect they will yield important insights into the effects of such vigorous star formation.

The orderly nature of Triangulum's spiral, with dust distributed throughout, is another distinctive feature. Astronomers think that in the Local Group, Triangulum has been something of an introvert, isolated from frequent interactions with other galaxies while keeping busy producing stars along organized spiral arms. Uncovering the Triangulum galaxy’s story will provide an important point of reference in understanding how galaxies develop over time, and the diverse paths that shape what we see today.

(More at HubbleSite.com)
 
What Does the Milky Way Weigh? Hubble and Gaia Investigate

low_STSCI-H-p1916a-k1340x520.png


We live in a gigantic star city. Our Milky Way galaxy contains an estimated 200 billion stars. But that's just the bare tip of the iceberg. The Milky Way is surrounded by vast amounts of an unknown material called dark matter that is invisible because it doesn't release any radiation. Astronomers know it exists because, dynamically, the galaxy would fly apart if dark matter didn't keep a gravitational lid on things.

Still, astronomers would like to have a precise measure of the galaxy's mass to better understand how the myriad galaxies throughout the universe form and evolve. Other galaxies can range in mass from around a billion solar masses to 30 trillion solar masses. How does our Milky Way compare?

Curious astronomers teamed up the Hubble Space Telescope and European Space Agency's Gaia satellite to precisely study the motions of globular star clusters that orbit our galaxy like bees around a hive. The faster the clusters move under the entire galaxy's gravitational pull, the more massive it is. The researchers concluded the galaxy weighs 1.5 trillion solar masses, most of it locked up in dark matter. Therefore, the Milky Way is a "Goldilocks" galaxy, not too big and not too small. Just right!

(More at HubbleSite.com)
 
Hubble Uncovers Oldest "Clocks" in Space to Read Age of Universe

Pushing the limits of its powerful vision, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy. These extremely old, dim stars provide a completely independent reading of the universe's age without relying on measurements of the universe's expansion. The ancient white dwarf stars, as seen by Hubble, turn out to be 12 to 13 billion years old. Because earlier Hubble observations show that the first stars formed less than 1 billion years after the universe's birth in the big bang, finding the oldest stars puts astronomers well within arm's reach of calculating the absolute age of the universe.

(More at HubbleSite.com)
 
Back
Top