Space Hubble Telescope News

STScI Astronomers Help Develop and Operate World's Most Powerful Planet Finder

low_keystone.png


Space Telescope Science Institute astronomers have been involved in nearly a decade of development, construction, and testing of the world's most advanced instrument for directly photographing and analyzing planets around other stars. Called the Gemini Planet Imager (GPI), the instrument will be used to photograph faint planets next to bright stars and probe their atmospheres, and to study dusty disks around young stars. GPI was used to image Beta Pictoris b, a planet orbiting the star Beta Pictoris. The bright star Beta Pictoris is hidden behind a mask in the center of the image that blocks out the glare of the central star.

(More at HubbleSite.com)
 
Kepler Finds a Very Wobbly Planet

low_keystone.png


Imagine living on a planet with seasons so unpredictable you would hardly know what to wear: Bermuda shorts or a heavy overcoat! That's the situation on a weird world found by NASA's planet-hunting Kepler space telescope. The planet, designated Kepler-413b, is located 2,300 light-years away in the constellation Cygnus. It circles a close pair of orange and red dwarf stars every 66 days. But what makes this planet very unusual is that it wobbles, or precesses, wildly on its spin axis, much like a child's top. The planet's orbit is tilted with respect to the plane of the binary star's orbit. Over an 11-year period, the planet's orbit too would appear to wobble as it circles around the star pair. All of this complex movement leads to rapid and erratic changes in seasons.

(More at HubbleSite.com)
 
Hubble Sees a 'Behemoth' Bleeding Atmosphere Around a Warm Neptune-Sized Exoplanet

low_keystone.png


Astronomers using NASA's Hubble Space Telescope have discovered an immense cloud of hydrogen dubbed "The Behemoth" bleeding off a planet orbiting a nearby star. The enormous, comet-like feature is about 50 times the size of the parent star. The hydrogen is evaporating from a warm, Neptune-sized planet, due to extreme radiation from the star. A phenomenon this large has never before been seen around any exoplanet. It may offer clues to how Super-Earths – massive, rocky, versions of Earth – are born around other stars through the evaporation of their outer layers of hydrogen. Finding "The Behemoth" could be a game-changer for characterizing atmospheres of the whole population of Neptune-sized planets and Super-Earths in ultraviolet observations.

(More at HubbleSite.com)
 
Most Earth-Like Worlds Have Yet to Be Born, According to Theoretical Study

low_keystone.png


Astronomers are conducting extensive observations to estimate how many planets in our Milky Way galaxy might be potential abodes for life. These are collectively called "Earth-like" – in other words, Earth-sized worlds that are at the right distances from their stars for moderate temperatures to nurture the origin of life. The search for extraterrestrial intelligent life in the universe (SETI) is based on the hypothesis that some fraction of worlds, where life originates, go on to evolve intelligent technological civilizations. Until we ever find such evidence, Earth is the only known abode of life in the universe. But the universe is not only vastly big, it has a vast future. There is so much leftover gas from galaxy evolution available that the universe will keep cooking up stars and planets for a very long time to come. In fact, most of the potentially habitable Earth-like planets have yet to be born. This theoretical conclusion is based on an assessment of star-birth data collected by the Hubble Space Telescope and exoplanet surveys made by the planet-hunting Kepler space observatory.

(More at HubbleSite.com)
 
Spirals in Dust Around Young Stars May Betray Presence of Massive Planets

low_keystone.png


A team of astronomers is proposing that huge spiral patterns seen around some newborn stars, merely a few million years old (about one percent our sun's age), may be evidence for the presence of giant, unseen planets. This idea not only opens the door to a new method of planet detection, but also could offer a look into the early formative years of planet birth. Though astronomers have cataloged thousands of planets orbiting other stars, the very earliest stages of planet formation are elusive because nascent planets are born and embedded inside vast, pancake-shaped disks of dust and gas encircling newborn stars. The conclusion that planets may betray their presence by modifying circumstellar disks on large scales is based on detailed computer modeling of how gas-and-dust disks evolve around newborn stars.

(More at HubbleSite.com)
 
Behemoth Black Hole Found in an Unlikely Place

low_keystone.png


Imagine driving through a small town containing modest-sized buildings and seeing a 100-story skyscraper. Astronomers found the equivalent monstrosity in space: a near-record supermassive black hole that weighs 17 billion suns and lives in a cosmic backwater community of a few galaxies. Until now, extremely massive black holes have been found at the cores of very large galaxies in regions of the universe packed with other large galaxies. This is not just coincidence. Like a cosmic Pac-Man, a monster black hole gobbles smaller black holes when two galaxies collide. This game of bumper cars is common in large galaxy clusters. In fact, the current black hole record holder tips the scale at 21 billion suns and resides in the crowded Coma galaxy cluster, located 330 million light-years away.

The newly discovered supersized black hole resides in the center of a massive elliptical galaxy, NGC 1600, located in a small grouping of about 20 galaxies. Astronomers estimate that these smaller galactic groupings are about 50 times more abundant than spectacular galaxy clusters like the Coma cluster. Based on this discovery, astronomers are now asking, Is this the tip of an iceberg? Maybe there are more monster black holes out there that don't live in a skyscraper in Manhattan, but in a tall building somewhere in the Midwestern plains.

(More at HubbleSite.com)
 
NASA's Hubble Finds Universe Is Expanding Faster Than Expected

low_keystone.jpg


When astronomer Edwin Hubble discovered nearly 100 years ago that the universe was uniformly expanding in all directions, the finding was a big surprise. Then, in the mid-1990s, another shocker occurred: astronomers found that the expansion rate was accelerating perhaps due to a repulsive property called "dark energy." Now, the latest measurements of our runaway universe suggest that it is expanding faster than astronomers thought. The consequences could be very significant for our understanding of the shadowy contents of our unruly universe. It may mean that dark energy is shoving galaxies away from each other with even greater – or growing – strength. Or, the early cosmos may contain a new type of subatomic particle referred to as "dark radiation." A third possibility is that "dark matter," an invisible form of matter that makes up the bulk of our universe, possesses some weird, unexpected characteristics. Finally, Einstein's theory of gravity may be incomplete.

These unnerving scenarios are based on the research of a team led by Nobel Laureate Adam Riess, who began a quest in 2005 to measure the universe's expansion rate to unprecedented accuracy with new, innovative observing techniques. The new measurement reduces the rate of expansion to an uncertainty of only 2.4 percent. That's the good news. The bad news is that it does not agree with expansion measurements derived from probing the fireball relic radiation from the big bang. So it seems like something's amiss – possibly sending cosmologists back to the drawing board.

(More at HubbleSite.com)
 
Gluttonous Star May Hold Clues to Planet Formation

low_keystone.png


In 1936, astronomers observed signs that the young star FU Orionis had begun gobbling material from its surrounding disk of gas and dust with a sudden voraciousness. During a three-month binge, as matter turned into energy, the star became 100 times brighter, heating the disk around it to temperatures of up to 12,000 degrees Fahrenheit. The brightening is the most extreme event of its kind that has been confirmed around a star the size of the sun, and may have implications for how stars and planets form. The intense baking of the star's surrounding disk likely changed its chemistry, permanently altering material that could one day turn into planets. FU Orionis is still devouring gas to this day, although not as quickly.

Visible-light observations of FU Orionis, which is about 1,500 light-years away from Earth, in the constellation Orion, have shown astronomers that the star's extreme brightness began slowly fading after its initial 1936 burst. But to understand the relationship between the star and the surrounding disk, and to find out what the star was still snacking on, astronomers combined infrared data from NASA's Spitzer Space Telescope and the Stratospheric Observatory for Infrared Astronomy (SOFIA), the world's largest airborne observatory, which is jointly owned by NASA and the German Aerospace Center. They found that FU Orionis had continued its ravenous snacking after the initial brightening event, eating the equivalent of 18 Jupiters over the next 80 years. They also predict that FU Orionis will have run out of hot material to nosh on within a few hundred years. At that point, the star will return to the state it was in before the dramatic 1936 brightening event.

(More at HubbleSite.com)
 
Hubble Finds Planet Orbiting Pair of Stars

low_display-2016-32a.png


Two is company, but three might not always be a crowd, at least in space. When astronomers found an extrasolar planet orbiting a neighboring star, a detailed analysis of the data uncovered a third body. But astronomers couldn't definitively identify whether the object was another planet or another star in the system.

Now, nine years later, astronomers have used ultra-sharp images from the Hubble Space Telescope to determine that the system consists of a Saturn-mass planet circling two diminutive, faint stars in a tight orbit around each other. The system, called OGLE-2007-BLG-349, resides 8,000 light-years away. Astronomers teased the signature of the three objects using an observational technique called gravitational microlensing. This occurs when the gravity of a foreground star bends and amplifies the light of a background star that momentarily aligns with it. The particular character of the light magnification can reveal clues to the nature of the foreground star and any associated planets.

(More at HubbleSite.com)
 
Improved Hubble Yardstick Gives Fresh Evidence for New Physics in the Universe

low_STSCI-H-p1812a-k-1340x520.png


The good news: Astronomers have made the most precise measurement to date of the rate at which the universe is expanding since the big bang. The possibly unsettling news: This may mean that there is something unknown about the makeup of the universe. The new numbers remain at odds with independent measurements of the early universe's expansion. Is something unpredicted going on in the depths of space?

Astronomers have come a long way since the early 1900s when they didn't have a clue that we lived in an expanding universe. Before this could be realized, astronomers needed an accurate celestial measuring stick to calculate distances to far-flung objects. At that time, faint, fuzzy patches of light that we now know as galaxies were thought by many astronomers to be objects inside our Milky Way. But, in 1913, Harvard astronomer Henrietta Leavitt discovered unique pulsating stars that maintain a consistent brightness no matter where they reside. Called Cepheid variables, these stars became reliable yardsticks for astronomers to measure cosmic distances from Earth.

A few years later, building on Leavitt's pioneering work, astronomer Edwin Hubble found a Cepheid variable star in the Andromeda nebula. By measuring the star's tremendous distance, Hubble proved that the nebula was really an entire galaxy — a separate island of billions of stars far outside our Milky Way.

He went on to find many more galaxies across space. When he used Cepheid variables to measure galaxy distances, he found that the farther away a galaxy is, the faster it appears to be receding from us. This led him to the monumental discovery that our universe is uniformly expanding in all directions. And, even the universe's age, which today we know is 13.8 billion years, could be calculated from the expansion rate.

Little would Leavitt have imagined that her Cepheid variable work would become the solid bottom rung of a cosmic distance ladder of interlinked techniques that would allow for measurements across billions of light-years.

The latest Hubble telescope results that solidify the cosmic ladder confirm a nagging discrepancy showing the universe is expanding faster now than was expected from its trajectory seen shortly after the big bang. Researchers suggest that there may be new physics at work to explain the inconsistency. One idea is that the universe contains a new high-speed subatomic particle. Another possibility is that dark energy, already known to be accelerating the cosmos, may be shoving galaxies away from each other with even greater — or growing — strength.

The Hubble study extends the number of Cepheid stars analyzed to distances of up to 10 times farther across our galaxy than previous Hubble results. The new measurements help reduce the chance that the discrepancy in the values is a coincidence to 1 in 5,000.

(More at HubbleSite.com)
 
Kepler Solves Mystery of Fast and Furious Explosions

low_STSCI-H-p1818a-k-1340x520.png


The universe is so huge that it's estimated that a star explodes as a supernova once every second. Astronomers capture a small fraction of these detonations because they are comparatively short-lived, like fireflies flickering on a summer evening. After skyrocketing to a sudden peak in brightness, a supernova can take weeks to slowly fade away.

For the past decade astronomers have been befuddled by a more curious "flash-in-the-pan" that pops up and then disappears in just a few days, not weeks. It's called a Fast-Evolving Luminous Transient (FELT). Only a few FELTs have been seen in telescopic sky surveys because they are so brief.

Then along came NASA's Kepler Space Telescope that caught a FELT in the act. Kepler's outstanding ability to precisely record changes in the brightness of celestial objects was designed to look for planets across our galaxy. But a great spinoff from the observatory is to go supernova hunting too.

Kelper's unique capabilities captured the properties of the blast. This allowed astronomers to exclude a range of theories about how FELTs happen, and converge on a plausible model. They conclude that the brief flash is from a vast shell of material around a supernova that abruptly lights up when the supernova blast wave crashes into it.

(More at HubbleSite.com)
 
NASA's Webb Space Telescope to Inspect Atmospheres of Gas Giant Exoplanets

low_STSCI-J-p1830a-k1340x520.png


Thousands of exoplanets are known to orbit distant stars. Far fewer have had their atmospheres studied. The Webb telescope will bring new capabilities for determining atmospheric compositions, temperatures, and structures. Some of Webb’s earliest observations will focus on gas giants, whose puffy atmospheres should be easier to inspect. Lessons learned there will apply to later observations of small, rocky worlds.

(More at HubbleSite.com)
 
Hubble and Gaia Team Up to Fuel Cosmic Conundrum

low_STSCI-H-p1834a-k-1340x520.png


Using the powerful Hubble and Gaia space telescopes, astronomers just took a big step toward finding the answer to the Hubble constant, one of the most important and long-sought numbers in all of cosmology. This number measures the rate at which the universe is expanding since the big bang, 13.8 billion years ago. The constant is named for astronomer Edwin Hubble, who nearly a century ago discovered that the universe was uniformly expanding in all directions. Now, researchers have calculated this number with unprecedented accuracy.

Intriguingly, the new results further intensify the discrepancy between measurements for the expansion rate of the nearby universe, and those of the distant, primeval universe — before stars and galaxies even existed. Because the universe is expanding uniformly, these measurements should be the same. The so-called “tension” implies that there could be new physics underlying the foundations of the universe.

(More at HubbleSite.com)
 
What Does the Milky Way Weigh? Hubble and Gaia Investigate

low_STSCI-H-p1916a-k1340x520.png


We live in a gigantic star city. Our Milky Way galaxy contains an estimated 200 billion stars. But that's just the bare tip of the iceberg. The Milky Way is surrounded by vast amounts of an unknown material called dark matter that is invisible because it doesn't release any radiation. Astronomers know it exists because, dynamically, the galaxy would fly apart if dark matter didn't keep a gravitational lid on things.

Still, astronomers would like to have a precise measure of the galaxy's mass to better understand how the myriad galaxies throughout the universe form and evolve. Other galaxies can range in mass from around a billion solar masses to 30 trillion solar masses. How does our Milky Way compare?

Curious astronomers teamed up the Hubble Space Telescope and European Space Agency's Gaia satellite to precisely study the motions of globular star clusters that orbit our galaxy like bees around a hive. The faster the clusters move under the entire galaxy's gravitational pull, the more massive it is. The researchers concluded the galaxy weighs 1.5 trillion solar masses, most of it locked up in dark matter. Therefore, the Milky Way is a "Goldilocks" galaxy, not too big and not too small. Just right!

(More at HubbleSite.com)
 
Mystery of the Universe's Expansion Rate Widens with New Hubble Data

low_STSCI-H-p1925a-k-1340x520.png


There is something wrong with our universe. Or, more specifically, it is outpacing all expectations for its present rate of expansion.

Something is amiss in astronomers' efforts to measure the past and predict the present, according to a discrepancy between the two main techniques for measuring the universe's expansion rate – a key to understanding its history and physical parameters.

The inconsistency is between the Hubble Space Telescope measurements of today's expansion rate of the universe (by looking at stellar milepost markers) and the expansion rate as measured by the European Space Agency's Planck satellite. Planck observes the conditions of the early universe just 380,000 years after the big bang.

For years, astronomers have been assuming this discrepancy would go away due to some instrumental or observational fluke. Instead, as Hubble astronomers continue to "tighten the bolts" on the accuracy of their measurements, the discordant values remain stubbornly at odds.

The chances of the disagreement being just a fluke have skyrocketed from 1 in 3,000 to 1 in 100,000.

Theorists must find an explanation for the disparity that could rattle ideas about the very underpinnings of the universe.

(More at HubbleSite.com)
 
HST Snaps Optical Jet of Quasar 3c 273

low_STSCI-H-p-9330a-k1340x520.png


The Green (V band) image (left) shows the field around the quasar 3c 273 (courtesy Matthew Colless, David Schade and the CFHT). The optical jet can be seen southwest of the quasar. The blue (B band) image (right) shows the optical jet as seen by the Faint Object Camera (FOC) on board the Hubble Space Telescope. For comparison, the 11X11 arcsec FOC field of view is marked on the ground based CFHT image. The insert (right) is a Maximum Entropy reconstruction of the FOC image. This FOC image is derived from three linearly polarized images which show that the brightest knots are highly polarized (20%-50%). A letter which describes these data appears in the 9 September 1993 issue of Nature.

(More at HubbleSite.com)
 
Bright Star Birth Region in a Dim Galaxy

low_STSCI-H-p9631a-k-1340x520.png


Clusters of stars and a fishhook-shaped cloud of luminescent gases glow brilliantly in NGC 2363, a giant star-forming region in the Magellanic galaxy NGC 2366.

The brightest object visible in the Hubble telescope image
is a member of a rare class of stars called an erupting Luminous Blue Variable [at the tip of the fishhook]. This monstrous star (30 to 60 times as massive as the Sun) is in a very unstable, eruptive phase of its life. The Hubble telescope photo is the only one in which the star can be clearly isolated from the rest of the cluster. A view of this region from a terrestrial telescope is on the left. Only four giant eruptions of these special stars have been recorded in history, the most famous being Eta Carinae (1837-1860) and P Cygni (1600), within our own galaxy.

(More at HubbleSite.com)
 
Massive Black Holes Dwell in Most Galaxies, According to Hubble Census

low_STSCI-H-p-9701a-k1340x520.png


Announcing the discovery of three black holes in three normal galaxies, astronomers suggest that nearly all galaxies may harbor super-massive black holes that once powered quasars (extremely luminous objects in the centers of galaxies), but are now quiescent.

This conclusion is based on a census of 27 nearby galaxies carried out by the Hubble telescope and ground-based observatories in Hawaii. The three galaxies in these images are believed to contain central, super-massive black holes. The galaxy NGC 4486B [lower left] shows a double nucleus [lower right]. The picture at lower right is a close-up of the central region of NGC 4486B.

(More at HubbleSite.com)
 
Hubble Pinpoints Distant Supernovae

low_STSCI-H-p-9802-k1340x520.png


Peering halfway across the universe to analyze light from exploded stars that died long before our Sun even existed, the Hubble telescope has allowed astronomers to determine that the expansion of the cosmos has not slowed since the initial impetus of the Big Bang. Thus, the universe's expansion should continue to balloon outward indefinitely.

These results are based on unprecedented distance measurements to supernovae that are so far away they allow astronomers to determine if the universe was expanding at a faster rate long ago. These images showcase three of the supernovae used in the survey. The arrows in the bottom row of pictures pinpoint these exploding stars; the top row of images shows the regions where the supernovae reside.

(More at HubbleSite.com)
 
Very Long Baseline Array Reveals Formation Region of Giant Cosmic Jet Near a Black Hole

low_STSCI-H-p-9943a-k1340x520.png


Astronomers have seen the exhaust products of black hole "engines": narrow beams of material traveling at nearly the speed of light. But they could only speculate where and how those beams were created. Now astronomers have gained their first glimpse at the mysterious region near a black hole at the heart of a distant galaxy where those columns of material are formed. Images of this phenomenon, taken by radio telescopes in Europe and the U.S., are the most detailed ever of the center of the galaxy M87, some 50 million light-years from Earth.

(More at HubbleSite.com)
 
Back
Top