Space Hubble Telescope News

Out of Whack Planetary System Offers Clues to a Disturbed Past

low_STSCI-H-p1017-k-1340x520.png


For just over a decade, astronomers have known that three Jupiter-type planets orbit the yellow-white star Upsilon Andromedae. But to their surprise it's now been discovered that not all planets orbit this star in the same plane, as the major planets in our solar system orbit the Sun. The orbits of two of the planets are inclined by 30 degrees with respect to each other. Such a strange orientation has never before been seen in any other planetary system. This surprising finding will impact theories of how planetary systems form and evolve, say researchers. It suggests that some violent events can happen to disrupt planets' orbits after a planetary system forms. The discovery was made by joint observations with the Hubble Space Telescope, the giant Hobby-Eberly Telescope, and other ground-based telescopes.

These findings were presented in a press conference today at the 216th meeting of the American Astronomical Society in Miami.

(More at HubbleSite.com)
 
Supermassive Black Holes May Frequently Roam Galaxy Centers

low_STSCI-H-p1018-k-1340x520.png


A team of astronomy researchers at Florida Institute of Technology and Rochester Institute of Technology in the United States and University of Sussex in the United Kingdom, find that the supermassive black hole (SMBH) at the center of the most massive local galaxy (M87) is not where it was expected. Their research, conducted using the Hubble Space Telescope (HST), concludes that the SMBH in M87 is displaced from the galaxy center. The most likely cause for this SMBH to be off center is a previous merger between two older, less massive, SMBHs. The iconic M87 jet may have pushed the SMBH away from the galaxy center, say researchers. The research is being presented today at the 216th meeting of the American Astronomical Society in Miami. It will also be published in The Astrophysical Journal Lettters.

(More at HubbleSite.com)
 
Hubble Images Suggest Rogue Asteroid Smacked Jupiter

low_STSCI-H-p1016-k-1340x520.png


Without warning, a mystery object struck Jupiter on July 19, 2009, leaving a dark bruise the size of the Pacific Ocean. The spot first caught the eye of an amateur astronomer in Australia, and soon, observatories around the world, including NASA's Hubble Space Telescope, were zeroing in on the unexpected blemish. Astronomers had witnessed this kind of cosmic event before. Similar scars had been left behind during the course of a week in July 1994, when more than 20 pieces of Comet P/Shoemaker-Levy 9 (SL9) plunged into Jupiter's atmosphere. The 2009 impact occurred during the same week, 15 years later.

This Hubble image of Jupiter's full disk, taken July 23, 2009, revealed an elongated, dark spot at lower, right (inside the rectangular box). The unexpected blemish was created when an unknown object plunged into Jupiter and exploded, scattering debris into the giant planet's cloud tops. The strike was equal to the explosion of a few thousand standard nuclear bombs. The series of close-up images at right, taken between July 23, 2009 and Nov. 3, 2009, show the impact site rapidly disappearing. Jupiter's winds also are spreading the debris into intricate swirls. The natural-color images are composites made from separate exposures in blue, green, and red light. Astronomers who compared Hubble images of the two collisions (in 1994 and 2009) say that the culprit in the 2009 event may have been an asteroid about 1,600 feet (500 meters) wide. The images, therefore, may show for the first time the immediate aftermath of an asteroid, rather than a comet, striking another planet.

(More at HubbleSite.com)
 
Mysterious Flash on Jupiter Left No Debris Cloud

low_STSCI-H-p1020-k-1340x520.png


Detailed observations made by the Wide Field Camera 3 on NASA's Hubble Space Telescope have found an answer to the flash of light seen June 3 on Jupiter. It came from a giant meteor burning up high above Jupiter's cloud tops. The space visitor did not plunge deep enough into the atmosphere to explode and leave behind any telltale cloud of debris, as seen in previous Jupiter collisions.

(More at HubbleSite.com)
 
Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

low_STSCI-H-p-1120a-k-1340x520.png


A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars.

The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star's birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble's unprecedented sharpness allows astronomers to see changes in the jets over just a few years' time. Most astronomical processes change over timescales that are much longer than a human lifetime.

(More at HubbleSite.com)
 
Even Low-Mass Galaxies Can Harbor Supermassive Black Holes

low_STSCI-H-p-1127a-k-1340x520.png


Using the slitless grism on Hubble Space Telescope's Wide Field Camera 3 to probe the distant universe, astronomers have found supermassive black holes growing in surprisingly small galaxies. The findings suggest that central black holes formed at an earlier stage in galaxy evolution. This study is part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and will be published in the Astrophysical Journal.

(More at HubbleSite.com)
 
Space Telescopes Reveal Secrets of Turbulent Black Hole

low_STSCI-H-p-1128a-k-1340x520.png


An international team of astronomers using five different telescopes has uncovered striking features around a supermassive black hole in the core of the distant galaxy Markarian 509. They found a very hot corona hovering above the black hole and cold gas "bullets" in hotter diffuse gas, speeding outward with velocities over 1 million miles per hour. This corona absorbs and reprocesses the ultraviolet light from the accretion disk encircling the black hole, energizing it and converting it into X-rays. This discovery allows astronomers to make sense of some of the observations of active galaxies that have been hard to explain so far. The heart of the campaign consisted of repeated visible, X-ray, and gamma-ray observations with ESA's XMM-Newton and INTEGRAL satellites, which monitored Markarian 509 for six weeks. This was followed by long observations with NASA's Chandra X-ray Observatory and the Hubble Space Telescope. Prior to these observations short snapshots to monitor the behavior of the source at all wavelengths were taken with NASA's Swift satellite. The combined efforts of all these instruments gave astronomers an unprecedented insight into the core of an active galaxy.

The Cosmic Origins Spectrograph aboard Hubble reveals that the coolest gas in the line of sight toward Markarian 509 has 14 different velocity components at various locations in the innermost parts of this galaxy. Hubble's data, combined with X-ray observations, show that most of the visible outflowing gas is blown off from a dusty gas disk surrounding the central region more than 15 light-years away from the black hole. This outflow consists of dense, cold blobs or gas bullets embedded in hotter diffuse gas. The international consortium responsible for this campaign consists of 26 astronomers from 21 institutes on 4 continents. The first results of this campaign will be published as a series of seven papers in the journal Astronomy and Astrophysics. More results are in preparation.

(More at HubbleSite.com)
 
Astronomers Find Elusive Planets in Decade-Old Hubble Data

low_STSCI-H-p-1129a-k-1340x520.png


In a painstaking re-analysis of Hubble Space Telescope images from 1998, astronomers have found visual evidence for two extrasolar planets that went undetected back then.

Finding these hidden gems in the Hubble archive gives astronomers an invaluable time machine for comparing much earlier planet orbital motion data to more recent observations. It also demonstrates a novel approach for planet hunting in archival Hubble data.

(More at HubbleSite.com)
 
Ambitious Hubble Survey Obtaining New Dark Matter Census

low_STSCI-H-p-1125a-k-1340x520.png


Cluster MACS J1206.2-0847 (or MACS 1206 for short) is one of the first targets in a Hubble Space Telescope survey that will allow astronomers to construct the highly detailed dark matter maps of more galaxy clusters than ever before. These maps are being used to test previous but surprising results that suggest that dark matter is more densely packed inside galaxy clusters than some models predict. This might mean that galaxy cluster assembly began earlier than commonly thought. The multiwavelength survey, called the Cluster Lensing And Supernova survey with Hubble (CLASH), probes, with unparalleled precision, the distribution of dark matter in 25 massive clusters of galaxies. So far, the CLASH team has completed observations of six of the 25 clusters. MACS 1206 lies 4.5 billion light-years from Earth. This image was taken with Hubble's Advanced Camera for Surveys and the Wide Field Camera 3 in April 2011 through July 2011.

(More at HubbleSite.com)
 
Astronomers Pin Down Galaxy Collision Rate

low_STSCI-H-p-1130a-k-1340x520.png


A new analysis of Hubble surveys, including the All-Wavelength Extended Groth Strip International Survey (AEGIS), the Cosmological Evolution Survey (COSMOS), and the Great Observatories Origins Deep Survey (GOODS), combined with simulations of galaxy interactions, reveals that the merger rate of galaxies over the last 8 billion to 9 billion years falls between previous estimates.

The galaxy merger rate is one of the fundamental measures of galaxy evolution, yielding clues to how galaxies bulked up over time through encounters with other galaxies. And yet, a huge discrepancy exists over how often galaxies coalesced in the past. Earlier measurements of galaxies in deep-field surveys made by NASA's Hubble Space Telescope generated a broad range of results: anywhere from 5 percent to 25 percent of the galaxies were merging. Results from this new study are accepted for publication in The Astrophysical Journal.

(More at HubbleSite.com)
 
Hubble Uncovers Tiny Galaxies Bursting with Star Birth in Early Universe

low_STSCI-H-p-1131a-k-1340x520.png


Using its near-infrared vision to peer 9 billion years back in time, NASA's Hubble Space Telescope has uncovered an extraordinary population of tiny, young galaxies that are brimming with star formation. The galaxies are typically a hundred times less massive than the Milky Way galaxy, yet they churn out stars at such a furious pace that their stellar content would double in just 10 million years. By comparison, the Milky Way would take a thousand times longer to double its population.

The observations were part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), an ambitious three-year survey to analyze the most distant galaxies in the universe. CANDELS is the census of dwarf galaxies at such an early epoch in the universe's history.

(More at HubbleSite.com)
 
NASA's Hubble Finds Stellar Life and Death in a Globular Cluster

low_STSCI-H-p-1135a-k-1340x520.png


A new NASA Hubble Space Telescope image shows globular cluster NGC 1846, a spherical collection of hundreds of thousands of stars in the outer halo of the Large Magellanic Cloud, a neighboring dwarf galaxy of the Milky Way that can be seen from the southern hemisphere. The most intriguing object, however, doesn't seem to belong in the cluster. It is a faint green bubble in the white box near the bottom center of the image. This so-called "planetary nebula" is the aftermath of the death of a star.

(More at HubbleSite.com)
 
Hubble Serves Up a Holiday Snow Angel

low_STSCI-H-p-1138a-k-1340x520.png


The bipolar star-forming region, called Sharpless 2-106, or S106 for short, looks like a soaring, celestial snow angel. The outstretched "wings" of the nebula record the contrasting imprint of heat and motion against the backdrop of a colder medium. Twin lobes of super-hot gas, glowing blue in this image, stretch outward from the central star. This hot gas creates the "wings" of our angel. A ring of dust and gas orbiting the star acts like a belt, cinching the expanding nebula into an "hourglass" shape.

(More at HubbleSite.com)
 
NASA's Hubble Discovers Another Moon Around Pluto

low_STSCI-H-p-1123a-k-1340x520.png


These two images, taken about a week apart by NASA's Hubble Space Telescope, show four moons orbiting the distant, icy dwarf planet Pluto. The green circle in both snapshots marks the newly discovered moon, temporarily dubbed P4, found by Hubble in June. P4 is the smallest moon yet found around Pluto, with an estimated diameter of 8 to 21 miles (13 to 34 km). By comparison, Pluto's largest moon Charon is 746 miles (1,200 km) across. Nix and Hydra are 20 to 70 miles (32 to 113 km) wide. The new moon lies between the orbits of Nix and Hydra, two satellites discovered by Hubble in 2005. P4 completes an orbit around Pluto roughly every 31 days.

The new moon was first seen in a photo taken with Hubble's Wide Field Camera 3 on June 28, 2011. The sighting was confirmed in follow-up Hubble observations taken July 3 and July 18. P4, Nix, and Hydra are so small and so faint that scientists combined short and long exposures to create this image of Pluto and its entire moon system. The speckled background is camera "noise" produced during the long exposures. The linear features are imaging artifacts. The Hubble observations will help NASA's New Horizons mission, scheduled to fly through the Pluto system in 2015. Space Telescope Science Institute director's discretionary time was allocated to make the Hubble observations.

(More at HubbleSite.com)
 
Hubble Offers a Dazzling View of the 'Necklace' Nebula

low_STSCI-H-p-1124a-k-1340x520.png


A giant cosmic necklace glows brightly in this NASA Hubble Space Telescope image. The object, aptly named the Necklace Nebula, is a recently discovered planetary nebula, the glowing remains of an ordinary, Sun-like star. The nebula consists of a bright ring, measuring 12 trillion miles across, dotted with dense, bright knots of gas that resemble diamonds in a necklace. The knots glow brightly due to absorption of ultraviolet light from the central stars.

The Necklace Nebula is located 15,000 light-years away in the constellation Sagitta (the Arrow). In this composite image, taken on July 2, 2011, Hubble's Wide Field Camera 3 captured the glow of hydrogen (blue), oxygen (green), and nitrogen (red).

(More at HubbleSite.com)
 
Neptune Completes Its First Circuit Around The Sun Since Its Discovery

low_STSCI-H-p-1119a-k-1340x520.png


These four images of Neptune were taken by NASA's Hubble Space Telescope during the planet's 16-hour rotation. The snapshots were taken at roughly four-hour intervals, offering a full view of the blue-green planet. Today marks Neptune's first orbit around the Sun since it was discovered nearly 165 years ago. These images were taken to commemorate the event.

The Hubble images, taken with the Wide Field Camera 3 on June 25-26, reveal high-altitude clouds in the northern and southern hemispheres. The clouds are composed of methane ice crystals. In the Hubble images, absorption of red light by methane in Neptune's atmosphere gives the planet its distinctive aqua color. The clouds look pink because they are reflecting near-infrared light. A faint, dark band near the bottom of the southern hemisphere is probably caused by a decrease in the hazes in the atmosphere that scatter blue light. The band was imaged by NASA's Voyager 2 spacecraft in 1989, and may be tied to circumpolar circulation created by high-velocity winds in that region. Neptune is the most distant major planet in our solar system. German astronomer Johann Galle discovered the planet on September 23, 1846. At the time, the discovery doubled the size of the known solar system. The planet is 2.8 billion miles (4.5 billion kilometers) from the Sun, 30 times farther than Earth. Under the Sun's weak pull at that distance, Neptune plods along in its huge orbit, slowly completing one revolution approximately every 165 years.

(More at HubbleSite.com)
 
NASA's Hubble Discovers Another Moon Around Pluto

low_STSCI-H-p-1123a-k-1340x520.png


These two images, taken about a week apart by NASA's Hubble Space Telescope, show four moons orbiting the distant, icy dwarf planet Pluto. The green circle in both snapshots marks the newly discovered moon, temporarily dubbed P4, found by Hubble in June. P4 is the smallest moon yet found around Pluto, with an estimated diameter of 8 to 21 miles (13 to 34 km). By comparison, Pluto's largest moon Charon is 746 miles (1,200 km) across. Nix and Hydra are 20 to 70 miles (32 to 113 km) wide. The new moon lies between the orbits of Nix and Hydra, two satellites discovered by Hubble in 2005. P4 completes an orbit around Pluto roughly every 31 days.

The new moon was first seen in a photo taken with Hubble's Wide Field Camera 3 on June 28, 2011. The sighting was confirmed in follow-up Hubble observations taken July 3 and July 18. P4, Nix, and Hydra are so small and so faint that scientists combined short and long exposures to create this image of Pluto and its entire moon system. The speckled background is camera "noise" produced during the long exposures. The linear features are imaging artifacts. The Hubble observations will help NASA's New Horizons mission, scheduled to fly through the Pluto system in 2015. Space Telescope Science Institute director's discretionary time was allocated to make the Hubble observations.

(More at HubbleSite.com)
 
A New Twist on an Old Nebula

low_STSCI-H-p0432a-k-1340x520.png


Looks can be deceiving, especially when it comes to celestial objects like galaxies and nebulas. These objects are so far away that astronomers cannot see their three-dimensional structure. The Helix Nebula, for example, resembles a doughnut in colorful images. Earlier images of this complex object – the gaseous envelope ejected by a dying, sun-like star – did not allow astronomers to precisely interpret its structure. One possible interpretation was that the Helix's form resembled a snake-like coil. Now, a team of astronomers using NASA's Hubble Space Telescope has established that the Helix's structure is even more perplexing. Their evidence suggests that the Helix consists of two disks nearly perpendicular to each other.

(More at HubbleSite.com)
 
Cosmic Collisions Galore!

low_STSCI-H-p0816a-k-1340x520.png


Astronomy textbooks typically present galaxies as staid, solitary, and majestic island worlds of glittering stars. But galaxies have a dynamical side. They have close encounters that sometimes end in grand mergers and overflowing sites of new star birth as the colliding galaxies morph into wondrous new shapes. Today, in celebration of the Hubble Space Telescope's 18th launch anniversary, 59 views of colliding galaxies constitute the largest collection of Hubble images ever released to the public. This new Hubble atlas dramatically illustrates how galaxy collisions produce a remarkable variety of intricate structures in never-before-seen detail.

(More at HubbleSite.com)
 
Hubble Celebrates the International Year of Astronomy with the Galaxy Triplet Arp 274

low_STSCI-H-p0914a-k-1340x520.png


On April 1-2, the Hubble Space Telescope photographed the winning target in the Space Telescope Science Institute's "You Decide" competition in celebration of the International Year of Astronomy (IYA). The winner is a group of galaxies called Arp 274. The striking object received 67,021 votes out of the nearly 140,000 votes cast for the six candidate targets.

(More at HubbleSite.com)
 
Back
Top